Etat des lieux des systèmes d’information dans le secteur de l’eau au Maghreb
Tunisie – Maroc - Algérie

Rapport d’étude

03 Novembre 2016


Phone : 0033 2.38.64.20.56
E-mail : axel.au rouet@anteagroup.com

GéoHyd, membre d’Antea Group
101 Rue Jacques Charles
45160 Olivet - France
# SOMMAIRE

## 1. Préambule

1.1. Rappel des Termes de références ........................................................................... 15

### 1.1.1. Rappel du contexte de l’étude demandée (Reprise des TdR) .......................... 15

### 1.1.2. Rappel des attendus des termes de référence (reprise des TdR) ............... 16

#### 1.1.2.1. Tâche 1 – Recensement des systèmes .................................................. 16

#### 1.1.2.2. Tâche 2 – Les circuits de l’information .................................................. 16

#### 1.1.2.3. Tâche 3 – Les flux d’information entrant et sortant .............................. 16

#### 1.1.2.4. Tâche 4 – Matrice SWOT – Synthèse globale ....................................... 16

1.2. Système d’information et Gestion intégrée des ressources en eau ........................... 17

1.3. Système d’information sur l’eau, théorie & concepts ........................................... 18

### 1.3.1. La pyramide des systèmes d’informations ......................................................... 18

### 1.3.2. Observatoire et systèmes d’informations, quelles différences ? ...................... 19

### 1.3.3. Système(s) d’information sur l’eau, quels objectifs pour quelles données et quel socle commun ? .......................................................... 19

#### 1.3.3.1. Un système d’information sur l’eau, une question d’échelle et de temps .......... 19

#### 1.3.3.2. Les thématiques d’un système d’information sur l’eau ......................... 20

#### 1.3.3.3. Le socle d’interopérabilité d’un SIEAU .................................................. 21

## 2. Systèmes d’informations du l’eau en Tunisie ............................................................ 22

### 2.1. Rappel des éléments de contexte ........................................................................ 22

#### 2.1.1. Le programme PISEAU ............................................................................ 22

#### 2.1.2. Le projet GEORE et le projet AERE (GIZ – GTZ) .................................. 23

#### 2.1.2.1. Le projet GEORE (Gestion Optimale des Ressources en Eau) ............ 23

#### 2.1.2.2. Le Projet AERE (Aménagement Efficient des Ressources en Eau) .... 23

### 2.2. Cartographie des acteurs impliqués dans le processus GIRE ........................... 24

#### 2.2.1. Le Ministère de l’Agriculture, des ressources hydrauliques et de la Pêche ... 24

#### 2.2.2. Le Ministère de l’environnement et du développement durable ............ 25

#### 2.2.3. Les autres institutions .............................................................................. 25

### 2.3. Analyse des Systèmes d’information .................................................................. 26

#### 2.3.1. Approche globale des SI mis en évidence lors de l’inventaire .................... 26

#### 2.3.2. Les Systèmes d’information « mono-thématique » sur la ressource en eau 27

##### 2.3.2.1. Synthèse sur les SI nationaux .............................................................. 27

##### 2.3.2.2. Les SI périphériques ........................................................................... 28

##### 2.3.2.3. Aspects spécifiques liés à la qualité des eaux et des sols .................... 28

##### 2.3.2.4. Les SI décentralisés ou déconcentrés .............................................. 28

##### 2.3.2.5. Tableau des SI recensés (hors SI laboratoire) .................................. 29

#### 2.3.3. Systèmes d’information sur les usages de l’eau et les forces motrices .... 30

#### 2.3.4. Les méta-systèmes de synthèse ................................................................. 30

### 2.4. Processus de collecte, de centralisation, de validation & de contrôle ............ 31

#### 2.4.1. Mode d’acquisition .................................................................................. 31

#### 2.4.2. Les modes de centralisation de l’information ............................................. 32

##### 2.4.2.1. Cas général ....................................................................................... 32

##### 2.4.2.2. Cas spécifique des applications développées dans le cadre du SINEAU .. 32

#### 2.4.3. Validation & contrôle .............................................................................. 32

### 2.5. Focus sur des flux d’information ...................................................................... 33

#### 2.5.1. Flux d’informations au sein de la DGRE pour SYGREAU ....................... 33

#### 2.5.2. Flux d’information sur les barrages et transferts ..................................... 34

### 2.6. Architecture et infrastructure des SIEAU ......................................................... 34
<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.1.</td>
<td>Le Système de centralisation de l’information</td>
<td>34</td>
</tr>
<tr>
<td>2.6.2.</td>
<td>La diffusion et l’échange de données</td>
<td>34</td>
</tr>
<tr>
<td>2.7.</td>
<td>Intégration de la composante géographique</td>
<td>35</td>
</tr>
<tr>
<td>2.8.</td>
<td>Le SINEAU Tunisie</td>
<td>35</td>
</tr>
<tr>
<td>2.8.1.</td>
<td>Le protocole SINEAU</td>
<td>35</td>
</tr>
<tr>
<td>2.8.2.</td>
<td>Cadre global du SINEAU</td>
<td>35</td>
</tr>
<tr>
<td>2.8.3.</td>
<td>Composantes logicielles du SINEAU</td>
<td>36</td>
</tr>
<tr>
<td>2.8.4.</td>
<td>Pilotage du SINEAU</td>
<td>36</td>
</tr>
<tr>
<td>2.8.5.</td>
<td>Etat actuel du SINEAU</td>
<td>37</td>
</tr>
<tr>
<td>2.8.6.</td>
<td>Définition du référentiel commun</td>
<td>38</td>
</tr>
<tr>
<td>2.8.1.</td>
<td>Aspects fonctionnels et organisationnel du référentiel commun</td>
<td>39</td>
</tr>
<tr>
<td>2.9.</td>
<td>Synthèse de l’analyse des SI dans le domaine de l’eau à l’échelle de la Tunisie</td>
<td>41</td>
</tr>
<tr>
<td>2.9.1.</td>
<td>Synthèse globale</td>
<td>41</td>
</tr>
<tr>
<td>2.9.2.</td>
<td>Synthèse sur les processus de collecte</td>
<td>42</td>
</tr>
<tr>
<td>2.9.3.</td>
<td>Echanges et partage des données</td>
<td>42</td>
</tr>
<tr>
<td>2.10.</td>
<td>Synthèse, recommandations, points d’attentions</td>
<td>43</td>
</tr>
<tr>
<td>2.10.1.</td>
<td>Analyse SWOT</td>
<td>43</td>
</tr>
<tr>
<td>2.10.1.1.</td>
<td>Les Forces</td>
<td>43</td>
</tr>
<tr>
<td>2.10.1.2.</td>
<td>Faiblesses</td>
<td>43</td>
</tr>
<tr>
<td>2.10.1.3.</td>
<td>Opportunités</td>
<td>43</td>
</tr>
<tr>
<td>2.10.1.4.</td>
<td>Menaces</td>
<td>43</td>
</tr>
<tr>
<td>2.10.2.</td>
<td>Les points d’attention et recommandations</td>
<td>44</td>
</tr>
<tr>
<td>2.10.3.</td>
<td>Bilan global</td>
<td>45</td>
</tr>
<tr>
<td>3.</td>
<td>Systèmes d’informations du l’eau en Algérie</td>
<td>46</td>
</tr>
<tr>
<td>3.1.</td>
<td>Rappel des éléments de contexte</td>
<td>46</td>
</tr>
<tr>
<td>3.1.1.</td>
<td>Le programme EAU I</td>
<td>46</td>
</tr>
<tr>
<td>3.1.2.</td>
<td>Le programme EAU II (coopération bilatérale Union Européenne – Algérie)</td>
<td>46</td>
</tr>
<tr>
<td>3.2.</td>
<td>Cartographie des acteurs impliqués dans la constitution des SI Eau</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Le ministère des ressources en eau et de l’Environnement</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1.1.</td>
<td>Les principales directions du ministère</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1.2.</td>
<td>Les principaux organismes sous tutelle du MRE</td>
<td>49</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Les Agences de bassin hydraulique (ABH) et l’Agence Nationale de Gestion Intégrée des Ressources en Eau (AGIRE)</td>
<td>50</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>Autres institutions ou ministères</td>
<td>51</td>
</tr>
<tr>
<td>3.3.</td>
<td>Analyse des Systèmes d’information</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Approche globale des SI mis en évidence lors de l’inventaire en Algérie</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Les Systèmes d’information « mono-thématique » sur la ressource en eau</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2.1.</td>
<td>Synthèse sur les SI nationaux</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2.2.</td>
<td>Les SI périphériques</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2.3.</td>
<td>Aspects spécifiques liés à la qualité des eaux et des sols</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2.4.</td>
<td>Les SI décentralisés ou déconcentrés</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2.5.</td>
<td>Tableau des SI recensés (hors SI laboratoire)</td>
<td>55</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Systèmes d’information sur les usages de l’eau et les forces motrices</td>
<td>55</td>
</tr>
<tr>
<td>3.3.4.</td>
<td>Les méta-systèmes de synthèse</td>
<td>56</td>
</tr>
<tr>
<td>3.4.</td>
<td>Processus de collecte, de centralisation, de validation &amp; de contrôle</td>
<td>57</td>
</tr>
<tr>
<td>3.4.1.</td>
<td>Dans les SI mono-thématiques</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1.1.</td>
<td>Mode d’acquisition</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1.2.</td>
<td>Les modes de centralisation de l’information</td>
<td>58</td>
</tr>
<tr>
<td>3.4.1.3.</td>
<td>Validation &amp; contrôle</td>
<td>59</td>
</tr>
<tr>
<td>3.4.2.</td>
<td>Dans les SI « méta-système de synthèse »</td>
<td>59</td>
</tr>
<tr>
<td>3.5.</td>
<td>Focus sur des flux d’information</td>
<td>59</td>
</tr>
<tr>
<td>3.5.1.</td>
<td>Flux d’informations au sein de l’ANRH sur les bases « Ressources en eau » (hors SYRSA)</td>
<td>59</td>
</tr>
<tr>
<td>3.5.2.</td>
<td>Flux d’information sur les barrages (ANBT)</td>
<td>60</td>
</tr>
</tbody>
</table>
3.6. Architecture et infrastructure des SIEAU .......................................................... 62
   3.6.1. Le Système de centralisation de l’information ........................................... 62
   3.6.2. La diffusion et l’échange de données ......................................................... 63

3.7. Intégration de la composante géographique ..................................................... 63

3.8. Synthèse de l’analyse des SI dans le domaine de l’eau à l’échelle de l’Algérie .... 64
   3.8.1. Synthèse sur les SI sur la ressource en eau à l’ANRH ................................ 64
   3.8.2. Le SI de l’ANBT ...................................................................................... 64
   3.8.3. Synthèse sur les principaux SI au sein du MRE et des ABH ..................... 64
   3.8.4. Synthèse sur les Autres SI du MREE ...................................................... 66
   3.8.5. Les initiatives au sein de la DISI en matière de démarche commune sur les SIEau ................................. 67

3.9. Synthèse, recommandations, points d’attentions ............................................. 68
   3.9.1. Analyse SWOT .................................................................................... 68
       3.9.1.1. Les Forces .................................................................................. 68
       3.9.1.2. Faiblesses ............................................................................... 68
       3.9.1.3. Opportunités ........................................................................... 68
       3.9.1.4. Menaces ................................................................................. 68
   3.9.2. Les points d’attention et recommandations ............................................. 69
   3.9.3. Bilan global ....................................................................................... 69

4. Systèmes d’informations du l’eau au Maroc ......................................................... 71

4.1. Rappel des éléments de contexte ...................................................................... 71
   4.1.1. Stratégie Nationale de l’Eau ................................................................. 71
   4.1.2. Jumelage « Gouvernance et la Gestion Intégrée des Ressources en Eau au Maroc » avec le MEMEEuestas 71
   4.1.3. Programme d’Approvisionnement Groupé en Eau Potable des Populations Rurales (PAGER) ............. 71
   4.1.4. Plan National d’Assainissement (PNA) ............................................... 71
   4.1.5. Plan « Maroc Vert » du MAPM ......................................................... 72

4.2. Cartographie des acteurs impliqués dans le processus GIRE ......................... 72
   4.2.1. Le ministère délégué de l’Eau ............................................................. 72
   4.2.2. Les Autorités de bassins hydrauliques .................................................. 73
   4.2.3. Le ministère de l’agriculture et de la pêche maritime ................................ 74
   4.2.4. Autres institutions ou ministères ......................................................... 74

4.3. Analyse des Systèmes d’Information ................................................................ 75
   4.3.1. Approche globale des SI mis en évidence lors de l’inventaire au Maroc .......... 75
   4.3.2. Les Systèmes d’information « mono-thématique » sur la ressource en eau 76
       4.3.2.1. Synthèse sur les SI nationaux ...................................................... 76
       4.3.2.2. Les SI périphériques ................................................................. 77
       4.3.2.3. Aspects spécifiques liés à la qualité des eaux et des sols .......... 77
       4.3.2.4. Les SI décentralisés ou déconcentrés ..................................... 77
       4.3.2.5. Tableau des SI recensés ............................................................ 78
   4.3.3. Les Systèmes d’information « mono-thématique » sur les usages de l’eau et les forces motrices .............. 78
   4.3.4. Les métasystèmes de synthèse ............................................................ 79

4.4. Processus de collecte, de centralisation, de validation & de contrôle .......... 81
   4.4.1. Mode d’acquisition ............................................................................. 81
   4.4.2. Les modes de centralisation de l’information ...................................... 82
       4.4.2.1. Cas général ............................................................................ 82
       4.4.2.2. Cas spécifiques des observatoires ....................................... 82
   4.4.3. Validation & contrôle ........................................................................ 82

4.5. Focus sur le flux de données entre ABH & DRPE sur le volet « ressources en eau » .... 82
   4.5.1. Acquisition ....................................................................................... 82
   4.5.2. Intégration dans les SI des ABH ......................................................... 83
   4.5.3. Centralisation au niveau national ....................................................... 83

4.6. Architecture et infrastructure des SIEAU ......................................................... 85
4.6.1. Systèmes de centralisation de l’information ___________________________ 85
4.6.2. La diffusion et l’échange des données ______________________________ 85

4.7. Intégration de la composante géographique ____________________________ 86

4.8. Le projet de Système National d’Information sur l’Eau (SNIE) __________ 86
4.8.1. Description du SNIE ______________________________________________ 86
4.8.2. Exigences fonctionnelles attendues du SNIE __________________________ 87
  4.8.2.1. SNIE central ___________________________________________________ 87
  4.8.2.2. SNIE partenaire ________________________________________________ 88
4.8.3. Fonctionnalités techniques du SNIE ________________________________ 88
4.8.4. Gestion des accès ________________________________________________ 88
4.8.5. Implication et attentes des partenaires ______________________________ 89

4.9. Synthèse de l’analyse des SI dans le domaine de l’eau à l’échelle du Maroc 89
4.9.1. Synthèse sur les SI ressources en eau ________________________________ 89
4.9.2. Synthèse sur les SI « usages de l’eau » ______________________________ 90
4.9.3. Synthèse sur les meta-système de synthèse __________________________ 90
4.9.4. L’initiative du SNIE ______________________________________________ 90

4.10. Synthèse, recommandations, points d’attentions _________________________ 91
4.10.1. Analyse SWOT __________________________________________________ 91
  4.10.1.1. Les Forces ____________________________________________________ 91
  4.10.1.2. Faiblesses ___________________________________________________ 91
  4.10.1.3. Opportunités _________________________________________________ 91
  4.10.1.4. Menaces _____________________________________________________ 92
4.10.2. Les points d’attention et recommandations __________________________ 92
4.10.3. Bilan global _____________________________________________________ 92

5. Synthèse de l’analyse conduite à l’échelle des 3 pays _______________________ 94

5.1. Analyse SWOT de synthèse ________________________ 94
  5.1.1. Les Forces ______________________________________________________ 94
  5.1.2. Faiblesses ______________________________________________________ 94
  5.1.3. Opportunités ____________________________________________________ 94
  5.1.4. Menaces ________________________________________________________ 94

5.2. Les points d’attention et recommandations ____________________________ 95

5.3. Synthèse globale ____________________________________________________ 95

Figures

Figure 1 : extrait des recommandations du GWP sur les “bonnes pratiques SI Eau” _______________________ 17
Figure 2 Schéma des objectifs de mutualisation de l’information géographique - Henri Pornon pour les journées de l’Information Géographique en Guyane - Octobre 2007 __________________________________________________________________________ 19
Figure 3 : pyramide des SI appliqué à l’eau ________________________________ 20
Figure 4 : les différents niveaux d’enjeu GIRE ________________________________ 20
Figure 5 Données sur l’eau et cycle simplifié de l’eau _________________________ 21
Figure 6 : Chronologie des projets & programmes en Tunisie ____________________ 24
Figure 7 : organigramme simplifié du MARHP en Tunisie ______________________ 25
Figure 8 : état des SI recensés en Tunisie ________________________________ 26
Figure 9 : Typologie des SI en Tunisie ____________________________________ 26
Figure 10 : catégories thématiques des SI en Tunisie _________________________ 27
Figure 11 modes de collecte des données en Tunisie ______________________________________ 32
Figure 12 schéma des flux d’information autour de SYGREAU (ante refonte du SYGREAU par SINEAU) ____________________________ 33
Figure 13 schéma des flux d’information sur les barrages et transferts ________ 34
Figure 14 illustration des attentes du SINEAU - Mr Lotfi Nacef 2011 __________ 35
Figure 15 organisation mise en oeuvre pour le protocole SINEAU ____________________________ 37
Figure 16 : Schéma fonctionnel global du SINEAU Tunisie ________________________ 38
Figure 17 résumé du référentiel commun extrait de l’étude dédiée en Tunisie _ 39
Figure 18 schéma du processus de validation / diffusion du référentiel commun du SINEAU tirée de l’étude dédiée _ 40
Figure 19 : organigramme simplifié du MREE en Algérie
Figure 20 : localisation des ABH en Algérie
Figure 21 : typologie des SI en Algérie
Figure 22 : déploiement des SI en Algérie
Figure 23 : catégorisations thématiques des SI en Algérie
Figure 24 : Copie d’écran de l'application BADGES
Figure 25 : périmètre fonctionnel du SIG de l’ONA
Figure 26 : mode de collecte des données en Algérie
Figure 27 : Espace de téléchargement des "canevas" d’information pour la mise à jour de la base SIR de l’ABH Sahara
Figure 28 : schéma des flux d’information autour de l’ANRH
Figure 29 : Schéma des flux d’information au niveau de l’ANBT (application Soudoud Djazair)
Figure 30 : Schéma de flux envisagé pour la mise à jour du SNDA
Figure 31 : schéma d’organisation et circuits de l’information issus d’une présentation sur les SI de gestion intégrée de l’information sur l’eau au MRE - DISI
Figure 32 : Vue de la Base Eau = SIR - ABH Constantine
Figure 33 : principaux SI GIRE au sein du MRE et échanges entre les partenaires
Figure 34 : les autres SI au sein du MRE
Figure 35 organigramme simplifié du Ministère de l’Energie, des Mines, de l’Eau et de l’environnement au Maroc
Figure 36 : ABH du Maroc
Figure 37 : catégorie thématique des SI au Maroc
Figure 38 : typologie des SI au niveau du Maroc
Figure 39 : déploiement des SI au Maroc
Figure 40 : exemple du SIG ABH OER avec gestion des interfaces vers l’ensemble des "Sous-SI" de l’ABH
Figure 41 : modes de collecte de la donnée au Maroc
Figure 42 : schéma de flux global des échanges au niveau de la DRPE au Maroc
Figure 43 : schéma de flux global entre les différents SI du ministère et le Portail Géospatial
Figure 44 : extrait du Portail Géospatial du Ministère délégué de l’Eau du Maroc
Figure 45 : schéma fonctionnel de principe du SNIE
Figure 46 : Architecture de SYCOHTRAC

Tableaux

Tableau 1 : synthèse des SI mono-thématiques sur la ressource en eau en Tunisie
Tableau 2 : Synthèse des méta-systèmes de synthèse en Tunisie
Tableau 3 : Synthèse des SI mono-thématique sur la ressource en eau en Algérie
Tableau 4 : synthèse des méta-systèmes de synthèse en Algérie
Tableau 5 : tableau des SI mono thématique sur la ressource en eau au Maroc
Tableau 6 : tableau des méta-systèmes de synthèse au Maroc

Annexes

Annexes A : Compte rendu des entretiens menés durant les missions en Tunisie
Annexes B : Compte rendu des entretiens menés durant les missions en Algérie
Annexes C : Compte rendu des entretiens menés durant les missions en Algérie
Annexes D : Slide de présentation auprès des organismes rencontrés durant nos visites dans les 3 pays
Annexes E : (documents séparés) : fiches de synthèse des SI identifiés
## ACORNYMES

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS</td>
<td>Solution de base de données fichier de la suite Microsoft</td>
</tr>
<tr>
<td>AEP</td>
<td>Adduction en Eau Potable</td>
</tr>
<tr>
<td>ArcGIS Server</td>
<td>Logiciel d’application serveur, solution commerciale ESRI, permettant la mise à disposition d’informations géographiques vers d’autres utilisateurs disposant d’une connexion à Internet.</td>
</tr>
<tr>
<td>BAD</td>
<td>Banque Africaine de Développement</td>
</tr>
<tr>
<td>BDD</td>
<td>Base de Données</td>
</tr>
<tr>
<td>BGR</td>
<td>Office Fédérale allemand pour les géosciences et les ressources naturelles</td>
</tr>
<tr>
<td>CREM</td>
<td>Coopération Régionale sur l’Eau au Maghreb</td>
</tr>
<tr>
<td>DCE</td>
<td>Directive Européenne Cadre sur l’Eau</td>
</tr>
<tr>
<td>DUMP</td>
<td>En informatique, le terme dump désigne généralement une copie brute (sans transformation) de données d’un périphérique à un autre ; par exemple pour effectuer une sauvegarde de données, les afficher sur un terminal, ou faire persister les données d’une mémoire vive. Il se distingue de la sauvegarde, qui désigne des copies structurées.</td>
</tr>
<tr>
<td>EPA</td>
<td>Etablishissement Publique Administratif</td>
</tr>
<tr>
<td>EPE</td>
<td>Etablishissement Publique à caractère Economique</td>
</tr>
<tr>
<td>EPIC</td>
<td>Etablishissement Publique à caractère Industriel &amp; Commercial</td>
</tr>
<tr>
<td>ESB</td>
<td>L’enterprise service bus (ESB) est une technique informatique intergicielle. Son but est avant tout de permettre la communication des applications qui n’ont pas été conçues pour fonctionner ensemble (par exemple deux progiciels de gestion intégrés provenant d’éditeurs différents).</td>
</tr>
<tr>
<td>GED</td>
<td>Gestion Electronique de Document</td>
</tr>
<tr>
<td>GIRE</td>
<td>Gestion intégrée des Ressources en Eau</td>
</tr>
<tr>
<td>GIZ</td>
<td>Gesellschaft für Internationale Zusammenarbeit (ex GTZ)</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service, norme (protocole réseau) pour la téléphonie mobile dérivée du GSM et complémentaire de celui-ci, permettant un débit de données plus élevé</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communication</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Water Partnership</td>
</tr>
<tr>
<td>IBD</td>
<td>Indice Biologique Diatomées</td>
</tr>
<tr>
<td>IBGN</td>
<td>Indice Biologique Global Normalisé</td>
</tr>
<tr>
<td>IDS</td>
<td>Infrastructure de données Spatiales</td>
</tr>
<tr>
<td>IRD</td>
<td>Institut de Recherche pour le Développement (ex ORSTOM)</td>
</tr>
<tr>
<td>JEE</td>
<td>Java Enterprise Edition, ou Java EE (anciennement J2EE), est une spécification pour la technique Java d’Oracle plus particulièrement destinée aux applications d’entreprise</td>
</tr>
<tr>
<td>JICA</td>
<td>Agence Japonaise de Coopération Internationale</td>
</tr>
<tr>
<td>KFW</td>
<td>Kreditanstalt für Wiederaufbau, Banque Allemande pour le développement</td>
</tr>
<tr>
<td>LIMS</td>
<td>Laboratory Information Management System</td>
</tr>
<tr>
<td>MySQL</td>
<td>Solution Open Source de base de données professionnelle</td>
</tr>
<tr>
<td>OMM</td>
<td>Organisation Mondiale de la Météorologie</td>
</tr>
<tr>
<td>ONEMA</td>
<td>Office National de l’Eau et de Milieu Aquatique Français. L’ONEMA est devenue Agence Française de la Biodiversité depuis le 1er janvier 2017.</td>
</tr>
<tr>
<td>ORACLE</td>
<td>Editeur commercial de solution de base de données professionnelle</td>
</tr>
<tr>
<td>OSS</td>
<td>Observatoire du Sahara et du Sahel</td>
</tr>
<tr>
<td>PostGres</td>
<td>Solution Open Source de base de données professionnelle</td>
</tr>
<tr>
<td>Projet SAS</td>
<td>Projet sur le Système Aquifère du Sahara Septentrional (porté par l’OSS)</td>
</tr>
</tbody>
</table>

**SEMIDE** Système Euro-Méditerranéen d’Information dans le Domaine de l’Eau

**SGBD** Système de Gestion de Bases de données Relationnelles

**Shapefile** Format de fichier SIG natif des solutions ESRI et communément lisibles par les autres plateformes SIG.

**SI** Système d’Information

**SIE / SIEau** Système d’information sur l’Eau

**SIG** Système d’Information Géographique

**SOA** Service Oriented Architecture; forme d’architecture de médiation qui est un modèle d’interaction applicative qui met en œuvre des services (composants logiciels) avec une forte cohérence interne (par l’utilisation d’un format d’échange pivot, le plus souvent XML) et des couplages externes « lâches » (par l’utilisation d’une couche d’interface interopérable, le plus souvent un service web WS-*).

**SOAP** Simple Object Access Protocol > Protocole de spécification pour l’échange d’informations structurées dans une architecture de services web.

**SPA** Société Par Action

**SQL Serveur** Solution de base de données professionnelle de la suite Microsoft

**SQL** Structured Query Language

**SUT** Système d’Utilisation des Terres

**SWOT / AFOM** Strength / Weakness / Opportunities / Threat – Forces / Faiblesses / Opportunités / Menaces

**UE** Union Européenne

**UTM** Universal Transverse Mercator, type de projection cylindrique conforme de la surface de la Terre

**VPN** Virtual Private Network

**WFS** Web Feature Services > protocole décrit dans des spécifications maintenues par l’Open Geospatial Consortium. Le service WFS permet, au moyen d’une URL formatée, d’interroger des serveurs cartographiques afin de manipuler des objets géographiques (lignes, points, polygones...)

**WMS** Web Mapping Services > protocole de communication standard qui permet d’obtenir des cartes de données géoréférencées à partir de différents serveurs de données

**XML** Extensible Markup Language (« langage de balisage extensible» en français) est un métalangage informatique de balisage générique pour faciliter l’échange automatisé de contenus complexes

**Acronymes spécifiques pour la Tunisie**

**AERE** Aménagement Efficient des Ressources en Eau - Projet GIZ

**AFA** Agence Foncière Agricole

**ANPE** Agence Nationale de la Protection de l’Environnement

**APAL** Agence de Protection et d’Aménagement du Littoral

**BIRH** Bureau d’Inventaire et des Recherches Hydrauliques

**BPEH** Bureau de la Planification et des Equilibres Hydrauliques

**CERTE** Centre d’Etude et de Recherche sur les techniques de l’Eau

**CITET** Centre International des Techniques de Tunis

**CNCT** Centre National de Cartographie et Télédétection

**COPEAU** Contrôle de la Pollution de l’Eau

**CRDA** Commissariat Régionaux au Développement Agricole

**CRET** Cartographie des Ressources en Eau de la Tunisie
Acronymes spécifiques pour le Maroc

**ABH**  Agence de Bassin Hydraulique (Maroc)
**ABH-BC**  Agence de Bassin hydraulique de Bouregreg et Chaouia
**ABH-OER**  Agence de bassin hydraulique Oum Er Rbia
**ANCFCCC**  Agence Nationale de la Conservation Foncière du cadastre et de la cartographie
**BAC 21**  Base de données des Annonces de Crue du 21ème siècle
**BADRE 21**  Base de données des Ressources en Eau du 21ème siècle
**CONDOR**  Application permettant de gérer des données sur les Barrages
**CPS**  Cahier des Prescriptions Spéciales
**CRTS**  Centre Royal de Télédetection Spatiale
**DAH**  Direction des Aménagement Hydraulique
**DMN**  Direction de la Météorologie Nationale
**DOSI**  Division organisation et Système d’Information
**DPH**  Domaine Publique Hydraulique
**DREF**  Direction Générale des Eaux & Forêts
**DRPE**  Direction de la Recherche et de la planification des ressources en eau
**GDAL**  Gestion des Données d’Analyse des Laboratoires
**GDE**  Gestion des Données d’Exploitation
**MDCE**  Ministère Délégué Chargé de l’Environnement
**MDE**  Ministère Délégué de l’Eau
**MEMEE**  Ministère de l’Energie, des Mines, de l’Eau et de l’Environnement
**ONEE**  Ex ONEP, Office national de l’Electricité et de l’Eau Potable
**ORMVA**  Office Régional de Mise en Valeur Agricole
**PAGER**  Programme d’Approvisionnement Groupé en Eau Potable des Populations Rurales
**PDAIRE**  Plans Directeur d’Aménagement Intégré des Ressources en Eau
**PNA**  Plan National d’Assainissement
**PNABV**  Plan National d’Aménagement des Bassin Versant
**PNE**  Plan National de l’eau
**PNEEI**  Programme nationale d’Economie d’Eau en Irrigation
**PPP**  Partenariat Publique Privé
**RGA**  Recensement Générale Agricole
**SNIE**  Terminologie marocaine pour le Système Nationale d’Information sur l’Eau du Maroc
**SPRE**  Source de Pollution des Ressources en Eau (Base de données)
DEFINITION

**DPSIR**
L’Approche DPSIR (Driving Forces, Pressures, State, Impact, Responses) est un cadre méthodologique mis au point par l'Agence Européenne pour l'Environnement, et qui permet d'aborder les grands éléments de la gestion intégrée des ressources en eau :

**Les Forces Motrices (Driving Forces),** qui regroupent les acteurs économiques et les activités associées, non nécessairement marchandes : agriculture, population, activités industrielles.... Ces "forces motrices" représentent les causes fondamentales des pressions.

**Les Pressions (Pressures),** qui sont la traduction des Forces Motrices (rejets, prélèvements d'eau, artificialisation des milieux aquatiques, captures de pêche ...) et à l’origine d’un changement d’état dans l’espace ou dans le temps.

**L’État (State),** qui décrit les milieux : concentration de différentes variables pour la physico-chimie, note IBGN pour la qualité biologique, peuplements piscicoles, les débits, les niveaux piézométriques ...

**Les Impacts (Impacts),** qui sont la conséquence des Pressions et des Réponses sur les milieux : augmentation des concentrations en phosphore, perte de la diversité biologique, baisse des débits ou des niveaux d’eau etc...

**Les Réponses (Responses)** qui sont les différentes actions correctrices entreprises, pouvant s’exercer sur la pression, l’état, les forces motrices ou directement sur les impacts. Les réponses peuvent être « techniques », « réglementaires », « scientifiques » etc.

**Interopérabilité**
Capacité que possède un système informatique, dont les interfaces sont intégralement connues, à fonctionner avec d’autres systèmes informatiques existants ou futurs et ce sans restriction d'accès ou de mise en œuvre. Les données et référentiels sur l’eau sont en réalité des spécifications techniques basées sur des jeux de données de référence garantissant notamment l’interopérabilité entre les systèmes informatiques relatifs à l'eau (langage commun).

**Référentiels**
Spécifications et ensemble structuré d’informations utilisés pour l’exécution d’un système d'information, constituant un cadre commun à plusieurs applications.

**Schéma National des Données sur l’Eau**
Outil permettant l’organisation, la rationalisation et la mutualisation des données entre les différents producteurs de données, à l’échelle de la France. Le schéma national des données sur l’eau (SNDE) comporte des mécanismes de gouvernance et des dispositifs de production, de bancarisation, de traitement, de valorisation et de diffusion des données et se fonde sur des méthodologies communes, un référentiel des données partagé et un système de gestion de la qualité.

**Scénario d’échange**

**Dictionnaire des données**
Ce sont des documents de spécification qui décrivent et précisent la terminologie et les données disponibles pour un domaine particulier. Ils comportent des entités (ou objets) reliés logiquement avec d’autres (l’objet « station » est par exemple relié à l’objet « point de prélèvement »). Ils servent notamment à concevoir des bases de données. Plusieurs aspects de la donnée y sont traités : sa signification, les règles
indispensables à sa rédaction ou à sa codification, la liste des valeurs qu'elle peut prendre, la ou les personnes ou organismes qui ont le droit de la créer, de la consulter, de la modifier ou de la supprimer.

Data
warehouse

Le terme entrepôt de données (ou base de données décisionnelle, ou encore data warehouse) désigne une base de données utilisée pour collecter, ordonner, journaliser et stocker des informations provenant de base de données opérationnelles et fournir ainsi un socle pour l’aide à la décision.
1. PREAMBULE

Cette étude s’inscrit dans le cadre du projet CREM (Coopération Régionale sur l’Eau au Maghreb). Elle s’est déroulée entre le mois de Mai 2016 et le mois de Novembre 2016. 3 missions ont été réalisées au niveau des 3 pays du Maghreb (Tunisie, Algérie & Maroc) par les experts internationaux :

- **Tunisie** : Du 16 au 24 Mai 2016 - Axel AUROUET & Victor ESSAYAN
- **Algérie** : Du 09 Juillet au 22 Juillet - Axel AUROUET & Victor ESSAYAN
- **Maroc** : Du 24 Juillet au 29 Juillet - Axel AUROUET & Victor ESSAYAN

Le bureau d’étude Concept (Mr Missaoui) s’est investi dans l’inventaire des SI eau en Tunisie sur la période Juin, Juillet et Août 2016. Le bureau d’étude African Geosystem Company (Mr Touat et Mr Bouzida) s’est investi dans les missions initiales d’inventaire des SI eau en Algérie au mois de juillet ainsi qu’en octobre – novembre 2016. Le bureau d’étude Resing (Mr Aboufirass et Mr Hadri) s’est investi dans la partie initiale d’inventaire des SI eau au Maroc au mois de juillet 2016 et a complété ses travaux durant le mois d’octobre 2016.

Durant les entretiens menés au niveau des pays, un point focal du projet CREM a systématiquement accompagné l’équipe. Aussi nous tenons à remercier Mr Mohammed Ben Sakka, Mr Amokrane Abdelli et Mme Meryem El-Madani pour leur disponibilité et leur accompagnement tout au long des missions. Leur concours a été d’une aide précieuse et cette analyse n’aurait pu être conduite sans eux.

Enfin nous tenons à remercier chaleureusement l’ensemble des institutions et partenaires qui ont pris le temps de nous recevoir et d’échanger avec nous durant les travaux et ce pour l’ensemble des pays dans lesquels nous avons pu mener notre analyse.

1.1. Rappel des Termes de références

1.1.1. **Rappel du contexte de l’étude demandée (Reprise des TdR)**

La Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) en Tunisie exécute en étroite collaboration avec l’OSS (Observatoire du Sahara et du Sahel) et le BGR (Office Fédérale allemand pour les géosciences et les ressources naturelles), le projet suivant : CREM (Coopération Régionale pour une Gestion Durable des Ressources en Eau au Maghreb).

**Le projet s’articule autour de plusieurs axes dont les principaux sont la clarification des concepts de bonnes pratiques et de Gestion Intégrée des Ressources en Eau (GIRE), une réflexion sur les modes d’échange de bonnes pratiques, la création d’un réseau de partenaires et le renforcement de capacités.**

L’eau est une ressource rare dans l’espace méditerranéen. Cette ressource est particulièrement sous tension dans les pays du Maghreb sous les effets conjugués des besoins toujours plus grands d’une population croissante, du développement urbain, du tourisme, de l’industrie et de l’irrigation des surfaces agricoles.

**Les systèmes d’informations sur l’eau existent mais leurs gestionnaires font face à de nombreux défis en termes d’actualisation des données, d’interopérabilité et d’utilisation.**

**La structuration d’une plateforme d’échanges de savoir et d’expérience entre les institutions partenaires des trois pays doit permettre la mutualisation des savoirs et des effets de synergie dans le domaine de la gestion durable des ressources en eau dans la région.** L’OSS (Observatoire du Sahara et du Sahel) en tant qu’institution intergouvernementale constitue le partenaire principal de ce projet.
1.1.2. **Rappel des attendus des termes de référence (reprise des TdR)**

Le (la) consultant(e) devra livrer une synthèse sur l’état des lieux des systèmes d’information et de gestion dans le secteur de l’eau au Maghreb.

1.1.2.1. Tâche 1 – Recensement des systèmes

Il (elle) devra effectuer une *recherche des systèmes d’information existant*. Il est attendu du (de la) consultant(e) qu’il (elle) complète la liste des Systèmes d’information fournie dans les termes de référence (notamment des SI locaux) et livre une brève analyse (2 pages/SI max) de l’état de chacun de ces systèmes d’information en mettant en lumière les éléments suivants :

- **Développement du SI** (conception, objectifs) et structure en charge de sa gestion
- **Etat de la base de données** : types de données collectées (qualitative/quantitative), méthode de recueil des données, état de l’actualisation
- **Stabilité des choix techniques** : ressources nécessaires, licences, maintenance, bug, etc...
- **Utilisation** : responsable identifié, formation du personnel, existence de tutoriel, degré d’utilisation sur le terrain
- **Utilisateur** : qui est habilité à rentrer des données ? à utiliser les données ?
- **Accessibilité** : « user friendly » ou non, diffusion au sein de la structure, diffusion externe, accès privilégié (recherche, université), accès grand public (internet, mise à disposition de lieux de consultation)
- **Interopérabilité** avec d’autres SI

1.1.2.2. Tâche 2 – Les circuits de l’information

L’étude devra faire apparaître quel est le *circuit de l’information depuis sa collecte jusqu’à son utilisation en passant par les méthodes de contrôle de la qualité de la donnée, de stockage, de transmission etc.*

Le (la) consultant(e) pourra par exemple proposer de suivre le chemin d’une donnée en particulier de sa collecte à son utilisation en évoquant les différentes étapes du parcours, les difficultés rencontrées, les enjeux.

1.1.2.3. Tâche 3 – Les flux d’information entrant et sortant

Il est demandé au (à la) consultant(e) *d’établir pour chaque institution gestionnaire de SI, une vue d’ensemble des flux d’informations sur l’eau qu’elle gère*. Il est également demandé que *soient intégrés les besoins d’informations/les informations reçues de la part d’autres institutions*. Cette analyse peut librement prendre la forme de textes ou de schémas.

Le/La consultant(e) sera en charge d’*indiquer pour chaque système d’information faisant l’objet d’un échange d’informations quelles sont les procédures en place.*

Il sera attendu du (de la) consultant(e) qu’il (elle) *propose des pistes d’amélioration pour la circulation des informations*. Pour ce faire, il sera nécessaire de discuter avec les gestionnaires et les utilisateurs des SI et de chercher à comprendre de quelle nature sont les blocages (techniques, financiers, institutionnels). Ces pistes d’amélioration devront être réalistes et tenir compte des cultures institutionnelles.

1.1.2.4. Tâche 4 – Matrice SWOT – Synthèse globale

Il (elle) devra également *analyser la situation globale des SI au Maghreb en termes de forces/faiblesses, opportunités/menaces*. Il s’agit de comprendre quels en sont les enjeux actuels non seulement d’un point de vue technique mais également d’un point de vue humain.

En ce qui concerne le Maroc, une étude réalisée dans le cadre de la mise en place du SNIE (Système National d’Information sur l’Eau) et soutenu par le SEMIDE et l’Union pour la Méditerranée a déjà opéré le recensement des données et des informations produites par les différents acteurs et institutions de l’eau. Il
n’apparaît donc pas utile de mener pour le Maroc les tâches 1 et 2 ; à moins que le/la consultant(e) puisse proposer un complément d’information. Le projet CREM ne peut assurer l’accès aux résultats de cette étude. Il est demandé au (à la) consultant(e) d’inclure le cas du Maroc dans les recommandations pour l’amélioration des échanges d’information sur le plan national et local (tâche 3). Le cas du Maroc devra également apparaître dans la matrice SWOT (tâche 4).

1.2. Système d’information et Gestion intégrée des ressources en eau

En s’appuyant sur les réflexions globales sur la gestion intégrée des ressources en eau, le Global Water Partnership identifie plusieurs points fondamentaux quant à la mise en œuvre d’une gestion intégrée réussie. Outre des approches organisationnelles et financières nécessaires, parmi les 8 piliers, la mise en place de « Systèmes d’information par bassin et suivi » apparaît comme un élément structurant. Les points clés identifiés sont :

- Faire en sorte que le système d’information du bassin soit interactif, accessible financièrement et techniquement, adapté et équitable.
- Collecter et organiser une série complète de données et d’informations physiques, biologiques, sociales et économiques relatives au bassin.
- Faire en sorte que les données et l’information soient liées à la stratégie et au plan de gestion par bassin.
- Assurer aux acteurs du bassin un accès à et une utilisation des données et de l’information en fonction de leurs besoins.
- Utiliser les systèmes d’information géographique et autres outils faciles à manipuler pour présenter l’état des ressources du bassin et suivre les changements.
- Mettre en place un programme de suivi du bassin qui coordonne les informations en provenance des niveaux régional, national et local, et des organisations publiques, privées et non-gouvernementales.

Ces « recommandations » larges quant à l’utilité de la mise en œuvre s’accompagnent également de points spécifiques qu’il nous parait important de souligner à ce stade. Parmi ces points importants, nous retiendrons spécifiquement :

- **Développer un réseau de partenaires et des groupes de travail** pour faciliter la collaboration entre institutions qui gèrent des données sur l’eau dans le bassin.
- **Définir une stratégie, des responsabilités et des règles** pour la production et la gestion des données, le traitement et la diffusion de l’information, et respecter la confidentialité.
- **Adopter des règles communes, des normes et nomenclatures**, afin que les données soient comparables et interopérables (services d’administration des données et des référentiels).
- **Mettre en place des programmes de suivi des ressources en eau et usages de l’eau** à l’échelle du bassin, et développer des indicateurs (processus, résultats, impacts) pour évaluer la politique de l’eau.

Il apparaît désormais clairement que si une stratégie GIRE s’appuie nécessairement sur des systèmes d’information et bases de données, il est fondamental, d’un point de vue national, d’accompagner ce
processus « numérique » en proposant à la fois des écosystèmes « techniques » pour l’échange et l’interopérabilité, mais également en « organisant » les processus de collecte et les flux des échanges entre les organismes et institutions. Cette affirmation est d’autant plus vraie dans le cas de l’eau, domaine qui se retrouve à la croisée d’un nombre conséquent d’acteurs et d’institutions et qui fédère une large gamme d’enjeux majeurs tels que la salubrité, l’autosuffisance alimentaire, le développement économique, la démographie ou encore le changement climatique. Il est donc important également de développer les ressources humaines en insistant sur des programmes de formations qui intègrent :

- **Des formations générales sur l’administration de données environnementales** (par exemple, production de données, concepts de tableaux de bord, indicateurs, qualité de la donnée) ;
- **Des formations techniques aux logiciels ou techniques non spécifiques aux secteurs de l’eau** et de l’environnement, comme par exemple la gestion des bases de données, les systèmes d'information géographique, les formats d’échange, les services web ; et
- **Des formations aux méthodes et outils spécifiques à l’administration des données** sur l’eau aux niveaux national, régional et local.

1.3. **Système d’information sur l’eau, théorie & concepts**

1.3.1. **La pyramide des systèmes d’informations**

La pyramide cognitive est classiquement appliquée aux systèmes d’information pour modéliser le cycle de vie d’une donnée et repositionner les objectifs attendus du Système d’Information. Cette représentation, quoique mouvante au fil du temps, permet également de poser une représentation des processus et, par déduction, des outils qui permettent de faire passer une donnée brute à une compréhension globale.

Un système d’information est avant tout un ensemble de moyens matériels et humains pour collecter, produire, stocker, évaluer et partager la donnée et l’information.

**L’étage « Donnée »** représente l’ensemble des données brutes et non interprétées donc objectives. C’est aussi le socle « d’observation » qui permet ensuite d’accéder au niveau supérieur. Les enjeux principaux de ce socle se situent autour de la structuration de la donnée, de l’interopérabilité, des métadonnées et des outils de capitalisation de la donnée (Base de données / SIG). Dans une approche organisationnelle, ils concernent les services « techniques » en charge d’administrer les données.

**L’étage « Information »** traduit la donnée pour des enjeux spécifiques c’est-à-dire comme un élément d’aide à la décision et d’évaluation objectif se matérialisant sous forme d’indicateurs ou d’indices accessibles et compréhensibles mais faisant l’objet d’une méthode de calcul ou d’agrégation. Les enjeux résident principalement dans la définition des indicateurs qui doivent refléter à la fois un phénomène ou son évolution tout en restant pertinents du point de vue du gestionnaire et du scientifique. Les outils peuvent rester relativement simples et les indicateurs sont la plupart du temps mis en œuvre à travers les outils communs (Système de Gestion de Bases de Données & Système d’Information Géographique).

**L’étage « connaissance »** est un étage plus complexe qui s’attache à mettre en lien les informations entre elles sur un sujet défini. Assimilé le plus souvent à la sphère du « modèle » il nécessite des outils et un socle de compétences plus proche du monde scientifique. Cette sphère est dite « interprétative » dans le sens où c’est bien « l’interprétation » de différentes informations qui amène à une connaissance globale d’un phénomène spécifique. Les outils associés sont souvent des outils « expert » peu transversaux.
L’étage de la compréhension réside dans la mise en lien de plusieurs connaissances issues de domaines variés (Economie / Environnement / Santé...). Dans sa dimension opérationnelle, cette partie est plutôt à mettre en lien avec la sphère de la décision et de l’action.

1.3.2. Observatoire et systèmes d’informations, quelles différences ?

Dans cette logique peut être posé le postulat d’une différenciation entre un Système d’Information Partagé (à rapprocher d’une « Infrastructure de Données Spatiales » -IDS) et d’un observatoire sur la base des échelons de cette pyramide. Le Système d’Information Partagé vise avant tout la mutualisation des ressources techniques dans un objectif de « donnée » et « d’information » là où l’observatoire peut aller plus loin en proposant une interprétation allant jusqu’à la connaissance d’un phénomène spécifique. L’Indicateur, élément structurant de l’information, constitue alors le pivot pour le passage d’un Système d’Information (SI) partagé à un observatoire.

Cette différenciation reste néanmoins purement théorique et ne se retrouve finalement pas de manière univoque dans les structures actuellement en place. L’appellation « observatoire », plus particulièrement dans le domaine de l’eau, se rapproche finalement assez souvent d’une infrastructure de données spatiales au sens où nous venons de le présenter.

1.3.3. Système(s) d’information sur l’eau, quels objectifs pour quelles données et quel socle commun ?

1.3.3.1. Un système d’information sur l’eau, une question d’échelle et de temps

Transcrit à partir de la pyramide des systèmes d’information, un système d’information sur l’eau peut prendre la forme suivante:

Figure 2 Schéma des objectifs de mutualisation de l’information géographique - Henri Pornon pour les journées de l’Information Géographique en Guyane - Octobre 2007
Chaque niveau de la pyramide adresse alors un niveau spatial et temporel particulier auquel le système d’information sur l’eau doit permettre de répondre en fonction des enjeux de gestion ou de planification. Chaque niveau répond alors également à la mise en place de méthodes (statistiques, modèles simplifiés ou complexes…) et d’outils spécifiques (SIG, logiciels spécifiques etc…) qu’il convient d’intégrer dans l’approche globale du SIE.

D’un point de vue « gouvernance » du système, un comité ou une cellule propre à chaque étage de la pyramide est également à envisager pour partager les méthodes et les enjeux ou pour simplement décider des actions (correctives, compensatrices, de connaissances, d’étude ou de suivi) à mettre en œuvre.

1.3.3.2. Les thématiques d’un système d’information sur l’eau

Dans notre vision d’un SIEAU à dimension nationale ou régionale, ce dernier représente un « méta système » capable de répondre à l’ensemble des problématiques qui peuvent se poser en lien avec la ressource ou les usages de l’eau. Or le domaine de l’eau recouvre à lui seul une multitude de thématiques différentes qui peuvent elles-mêmes faire l’objet de systèmes de bancarisation ou de stockage de l’information à part. Le schéma suivant met en parallèle les données nécessaires à un SIEAU de dimension nationale avec les besoins en donnée associées à chaque grand item.
1.3.3.3. Le socle d’interopérabilité d’un SIEAU

Afin de maintenir des échanges opérationnels entre ces différentes bases et sources de données, il est impératif de posséder un socle commun d’interopérabilité et d’administer ce socle commun d’interopérabilité.
2. SYSTEMES D'INFORMATIONS SUR L’EAU EN TUNISIE


2.1. Rappel des éléments de contexte

2.1.1. Le programme PISEAU

L’étude du secteur de l’eau a dégagé les grands axes d’une stratégie à long terme de gestion des ressources en eau par la mise en place du Programme d’Investissement dans le Secteur de l’EAU (PISEAUX). Cette stratégie à long terme aborde spécifiquement :

- Gestion intégrée et conservation des ressources en eau,
- Efficacité économique de l’utilisation de l’eau pour l’irrigation,
- Restructuration des institutions et renforcement de leur capacité dans le secteur de l’eau.

Le PISEAU I a couvert la période 2001 – 2007 avec notamment pour objectif l’application de méthode de gestion de la demande (efficacité, équité, durabilité) en conformité avec la nouvelle stratégie pour le secteur de l’eau. 5 composantes ont été identifiées dont 3 composantes d’investissement (Gestion de l’irrigation, gestion des ressources en eaux souterraines, Alimentation en eau potable) et 2 composantes d’appui (Conservation des ressources en eau et protection de l’environnement, Renforcement des capacités). Sous ce premier volet du PISEAU, le Système SYCOHTRAC (acquisition de données temps réel, Cf Fiche SYCOHTRAC) est lancé en 2002 et achevé en 2007. La première version de SYGREAU avec 3 gouvernorats pilotes est lancée et les spécifications détaillées du futur SINEAU sont lancées.

Le PISEAU II a lui couvert la période 2010 – 2015 avec pour but la promotion d’une gestion efficace de l’irrigation, l’amélioration de l’accès à l’eau potable, permettre une meilleure prise de décision en matière de Gestion intégrée des ressources en eau. 5 composantes principales du SINEAU II sont définies à savoir : 1-la gestion de l’irrigation, 2 - la gestion des eaux souterraines, 3 - la conservation des ressources et protection de l’environnement, 4 - l’alimentation en eau potable et 5 - le renforcement des institutions et des capacités. Le pilotage de la composante 2 – gestion des eaux souterraines – a été confié à la DGRE (Direction Générale des Ressources en Eau) du Ministère de l’Agriculture et des Ressources Hydraulique et de la Pêche. Sous cette composante, plusieurs axes sont identifiés dont :

1. La Prospection des ressources en eaux souterraines
2. Le Réseau de surveillance des ressources en eau (Consolidation des réseaux piézométriques, Systèmes d’acquisition des données, Suivi de la pluviométrie et des crues, réseau de suivi de la qualité des eaux)
3. Le Système National d’Information sur l’Eau – SINEAU incluant la mise à niveau du SYGREAU, la mise en œuvre d’un modèle de gestion des aquifères, la définition de la « Carte des ressources en eau » (CRET) et la mise en place du SINEAU
4. La gestion active des aquifères surexploités (Inventaire des points d’eau et évaluation des prélèvements, Recharge artificielle des nappes, Etablissement d’une stratégie nationale de recharge artificielle des nappes, Gestion participative des nappes).

2.1.2. **Le projet GEORE et le projet AERE (GIZ – GTZ)**

Ces 2 projets ont été portés par la GIZ (ex GTZ) entre 1995 et 2009 et se sont succédés au cours du temps.

2.1.2.1. Le projet GEORE (Gestion Optimale des Ressources en Eau)

*Le projet GEORE* a été le premier projet et *partait d’un constat de mobilisation convenable de la ressource en eau avec un déficit sur le système de gestion au sens large* et notamment en matière d’implication des institutions concernées. *L’accent a donc été mis sur les instruments nécessaires pour la mise en place d’une gestion intégrée des ressources en eau avec pour objectif d’améliorer les performances de gestion dans une vision GIRE tout en intégrant les contraintes énergétiques et de changement climatique.* Le projet GEORE s’est donc orienté vers la description des stratégies alternatives d’exploitation (quantité & qualité), l’évaluation de ces stratégies au moyen de critères de risque, la fourniture d’une base d’évaluation des approches utilisées. Pour y parvenir, *le projet GEORE a instauré un système de gestion informatisée tenant compte de l’équilibre offre / demande en eau ainsi que les coûts.* Ce système repose sur 3 axes à savoir sur un système d’information géographique (SIG), un modèle de qualité des eaux (Rivière, réservoir et eaux souterraines) et un modèle de prévision (estimation quantitative et qualitative pour la gestion des lâchers de barrage).

Dans la première phase de GEORE (1995 – 1997) une base de données nationale a été produite (carte agricole), une base de données régionalisée ainsi que des modèles d’optimisation et de simulation de la qualité des eaux (salinité) de la retenue de Sidi Salem ont été développés, l’acquisition de réseaux informatiques pour la DGETH et pour 5 CRDA avec mise en service de logiciels, la régionalisation des cartes topographiques du gouvernorat de Bizerte, de même que la compilation de données hydrologiques ont été réalisées.


Enfin la dernière phase du projet GEORE (2000 – 2003) visait plus particulièrement :

- L’extension du système de gestion à toute la Tunisie (ensemble du couplage SIG, Modèle Qualité des eaux et modèle de prévision,
- La mise en place de manuels de procédure de gestion,
- L’élaboration d’une banque de données de gestion de l’eau,
- L’extension des modèles de planification et bilans à l’horizon 2030,
- L’instauration d’autres stations de mesures combinées pour les débits et la qualité des eaux dans la Medjerda,
- L’élaboration d’un modèle de simulation pour la qualité de l’eau de la Medjerda
- L’élaboration des règles de gestion journalières relatives aux lâchers des réservoirs.

Ce projet GEORE a donné lieu à un outil global contenant à la fois des données, des scénarios et de la bibliographie sur l’ensemble des thèmes abordés (Cf Fiche GEORE). Cet outil est actuellement dans les locaux de la DGBGTH avec une utilisation assez restreinte. Le « Système » n’est pas mis à jour.

2.1.2.2. Le Projet AERE (Aménagement Efficient des Ressources en Eau)

Le projet AERE s’est étendu sur la période 2007 – 2010 et avait pour objectif d’assurer un développement sectoriel durable articulé autour d’un plan directeur mettant tous les secteurs usagers de l’eau en interface et intégrant les outils nécessaires. Les indicateurs de performances du projet étaient conditionnés sur :

*Indicateur 1:* Le BPEH dispose de toutes les données de base nécessaires pour élaborer une Planification Cadre des ressources en eau et une planification des investissements pour le moyen et le long terme.
**Indicateur 2:** Le BPEH dispose d’un Système de calcul du Bilan Hydraulique avec lequel il élabore des données de planification actualisées chaque année pour le développement à moyen et long terme des ressources en eau (publication de Bilans Hydrauliques).

Les 4 axes principaux du projet AERE étaient :

1. la planification stratégique intégrée,
2. la gestion de l’information,
3. les mécanismes de coordination et
4. le renforcement des capacités.

C’est sous le projet AERE que la préparation des termes de références et du cahier des charges du SINEAU a été produite (2010).

### Figure 6 : Chronologie des projets & programmes en Tunisie

#### 2.2. Cartographie des acteurs impliqués dans le processus GIRE

**2.2.1. Le Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche**

Le Ministère de l’Agriculture est le ministère qui concentre la problématique de la gestion intégrée des ressources en eau dans le sens où il concentre les activités de suivi / évaluation de la ressource en eau « naturelle » (eaux souterraines et eaux de surface) par le biais de la DGRE, les activités de suivi évaluation de la ressource en eau « stockée » (barrages) par le biais de la DGBGTH, les activités de suivi / évaluation des ressources en sol et petite hydraulique (petites retenues, sol des périmètres irrigués) par le biais de la DGACTA. Des établissements publics sous tutelle du Ministère de l’Agriculture et des Ressources Hydrauliques et de la Pêche tels que la SECADENORD (gestion et suivi du transfert d’eau en provenance des barrages) ou la SONEDE (gestion et distribution de l’eau potable) viennent compléter le périmètre d’intervention du ministère. En conséquence, toutes ces directions ou Etablissements sous tutelle, sont concernés directement par la problématique « Système d’information » notamment sur le volet « Ressources en eau » mais également sur le volet « distribution de l’eau ». Nous retiendrons que le BIRH (Bureau d’Inventaire et des Recherches Hydrauliques) est en charge d’administrer la plateforme du SINEAU et les CRDA (Commissariats Régionaux de Développement Agricole), services déconcentrés du ministère au niveau des régions, sont à la base du processus de collecte / remontée de l’information au niveau central. Enfin nous retiendrons également que l’IRESA (Institut de Recherche et de l’Enseignement Supérieur Agricole) concentre l’ensemble du volet « infrastructure Informatique et de base de données » pour le ministère.
2.2.2. **Le Ministère de l’environnement et du développement durable**


2.2.3. **Les autres institutions**

2.3. Analyse des Systèmes d’information

Pour mémoire, un système d’information constitue bien l’ensemble de moyens techniques, humains et matériels mis à disposition pour collecter, stocker, contrôler, valider et diffuser une information. Par extension, parmi les Systèmes d’information inventoriés, certains possèdent un niveau de maturité plus avancé que d’autre notamment au regard du degré d’intégration du SI dans une sphère numérique et de base de données.

2.3.1. Approche globale des SI mis en évidence lors de l’inventaire

27 Systèmes d’informations au total ont été recensés au niveau de la Tunisie. Certains peuvent être définis comme « archaïques » dans le sens où aucun stockage de l’information n’est réalisé dans un système de base de données et aucune information collectée ne fait l’objet d’une centralisation dans un système « numérique ».

70 % des SI identifiés (19) sont considérés comme « Fonctionnels » c’est-à-dire en situation de centralisation de données ou d’informations sur une ou des thématiques spécifiques. 15 % (4) des SI recensés sont « en cours de réalisation » dont COPEAU, SISOL, SINEAU & SI SONEDE. Le SYGREAU, bien qu’en cours de refonte, a été considéré comme « fonctionnel » car initialisé depuis quelques années. De la même manière, le Si de la DGBGTH est considéré comme « fonctionnel » grâce notamment à la mise en œuvre d’une base de données GEORE. Non maintenu et utilisé, ce système déployé à la DGBGTH, n’est pas réellement opérant. 4% (1) Si est recensé comme « non fonctionnel » (SYCOHTRAC). Dans les faits, ce SI semble fonctionnel mais pas totalement opérationnel. Enfin 11 % (3) des SI peuvent ne pas être considérés totalement comme des SI (BD Eaux thermales, DGGREE et SECADE NOR) dans le sens où les chemins de collecte et de centralisation de l’information sont très partiellement existants ou « archaïques ».

En zoomant sur les SI fonctionnels et ceux en cours de réalisation (24 SI), on recense 58 % des SI (14) qui sont dédiés à une thématique unique et qui peuvent donc se rapprocher d’une « Banque de données de référence » à l’échelle nationale (Système de synthèse Mono thématiques), 18.5 % (5) des SI qui sont une agrégation de plusieurs sources de données sur plusieurs thématiques (métasystème) et 18.5 % (5) qui sont en réalité des systèmes locaux ne couvrant pas soit l’ensemble du périmètre géographique national, soit l’ensemble d’une thématique spécifique. Pour ces systèmes locaux, on retrouve notamment les bases de données issues des laboratoires d’analyses physico-chimiques, les SI des CRDA (considéré comme 1 seul système dans notre analyse). Parmi les « métasystèmes » on retrouve le SINEAU dont la vocation est avant tout la publication d’indicateurs issus de différentes bases de données sur les « ressources en eau », le SI du CNCT qui propose différentes sorties sur différents thèmes liés à l’eau et à l’environnement, le SI environnement de l’INS qui va consolider des informations en provenance de différentes sources, le SI de l’ONAGRI ou Observatoire de l’agriculture et enfin le SI ou Base de données GEORE établi par la GIZ et qui concentre différentes données, informations ou documents.
Un focus sur les 14 SI « de synthèse mono-thématique » fonctionnels ayant vocation à avoir le statut de « banque de données nationale » montre que ces SI traitent majoritairement de la ressource en eau (71 % soit 10 SI), contre seulement 29 % (4) des SI traitant des Usages de l’eau. 1 Système (Office de topographie & Cadastre) est légèrement à la frontière d’un SI Eau dans le sens où sa vocation première reste cantonnée au maintien et à la mise à jour d’une information spatiale de référence sur le parcellaire agricole. Cette information prend du sens dans un processus décisionnel mais peut être considérée à la frontière des SI Eau à proprement parler et peut être considérée comme une « couche de données référentielle » au même titre que les découpages administratifs.

2.3.2. Les Systèmes d’information « mono-thématique » sur la ressource en eau

<table>
<thead>
<tr>
<th>Périmètre thématique des SI « Ressources en eau »</th>
<th>Mesures de débit des cours d’eau</th>
<th>Mesures de piézométrie des eaux souterraines</th>
<th>Mesures de qualité des eaux (Surface &amp; Souterrain)</th>
<th>Mesures de climatologie / pluviométrie</th>
<th>Mesures sur les ouvrages de stockage et de distribution</th>
</tr>
</thead>
</table>

2.3.2.1. Synthèse sur les SI nationaux

Ce que nous appelons « système de synthèse mono-thématique », comme énoncé plus haut, représente les SI qui ont vocation à être identifiés comme des « banques de données » de référence au niveau national. Parmi ces SI, nous identifions les bases de données « prioritaires » en matière de centralisation de l’information sur les ressources en eau et qui sont COPEAU (Ex SPORE) et SYGREAU. Ces 2 systèmes couvrent le périmètre principal de la ressource en eau « naturelle » avec le volet « Eaux de Surface » (Qualité & Quantité), le volet « Eaux Souterraines » (Qualité & Quantité) et le volet « Climatologie » (Partiellement). Sur ce dernier point, les bases de données de l’INM constituent un réservoir d’information plus qu’essentiel pour une bonne compréhension du fonctionnement des hydro-systèmes au sens large. Les SI COPEAU & SYGREAU, respectivement gérés par l’ANPE (MEDD) et la DGRE (MAREH), sont en cours de refonte ou de développement dans le cadre de la première phase du projet SINEAU. Leur opérationnalisation et mise en production dans leur nouvelle mouture est prévue pour Août 2016. Rappelons que le SYGREAU a déjà fait l’objet d’une refonte dans les années 2000.

Le système SISOL constitue l’autre système de référence en matière de centralisation de l’information sur les ressources en sol. Sous la responsabilité de la DGACTA (MAREH), il est également en cours de refonte dans le cadre du projet SINEAU et constitue donc le 3ème pilier de la première tranche du SINEAU. SISOL vise essentiellement le monitoring des périmètres irrigués par le suivi de l’hydromorphie et de la salinisation des sols. Des informations géographiques sur les périmètres irrigués sont stockées dans cette base de données. Nous retiendrons qu’il existe un système « SYCOHTRAC » (Système de Collecte de mesures Hydrologique en Temps Réel et Annonce de Crue), géré par la DGRE (MAREH) et permettant la remontée de données automatisée sur des stations de mesure hydrologique et climatologique et avec une vocation plutôt orientée sur le suivi des crues. Ce système évolue quelque peu en parallèle du SYGREAU. Même si les données remontées par ce système ont vocation à intégrer le SYGREAU, ce n’est actuellement pas le cas essentiellement pour des problèmes de transfert entre la station de réception et la base centrale et pour des raisons de propriété du code de développement de l’application de gestion. Ce système est actuellement « fermé » et fait l’objet d’un cahier des charges pour une mise en lien avec les Bases centrales de la DGRE.
Ce SI n’est utilisable actuellement que par les services dédiés des réseaux de mesures hydrologique et annonces de crue.

Les autres SI identifiés dans le périmètre des « Ressources en eau et sols » ont des envergures beaucoup plus restreintes dans leur déploiement et/ou leur état de maturité en général. Il existe une base de données des lacs & retenues collinaires au sein de la DGACTA avec de simples informations de positionnement et volume (parfois théoriques) qui sert de base de connaissance (couche SIG référentielle) pour l’appréhension des volumes stockés autrement que dans les grands ouvrages. La DGBGTH, en charge du suivi de la ressource stockée dans les grands barrages, ne possède pas de système d’information robuste à proprement parler dans le sens où les informations semblent stockées au sein de fichiers Excel mais de manière journalière. Pour le suivi des barrages, il existe certainement des Systèmes d’aide à la gestion et l’exploitation des barrages qui n’ont pas encore intégré le périmètre SINEAU lors d’une seconde phase à venir. Le Système GEORE, établi dans le cadre d’un projet GIZ, a été conçu spécifiquement pour la gestion des barrages avec un périmètre néanmoins beaucoup plus large que le simple monitoring des niveaux et des recharges. Dans notre approche ce SI est considéré comme un méta-système de synthèse. Le développement d’un réel SI de gestion des barrages devrait intégrer le périmètre SINEAU lors d’une seconde phase à venir. La SECADENORD, en charge des transferts d’eau depuis les barrages vers les usages spécifiques (Irrigation ou Eau potable) est le parent pauvre en matière de SI. Cette entité ne possède pas de système de centralisation alors même que des mesures sont effectuées sur le réseau de distribution et qu’elle reçoit des informations quotidiennes de la DGBGTH. La SECADENORD est prévue pour intégrer le périmètre du SINEAU dans une seconde phase. Des spécifications générales ont été conduites pour la mise en œuvre d’un SI pour la SECADENORD. Notons également que la SECADENORD a été équipée d’un système de suivi en temps réel qui a périclité pour des raisons de compatibilité de puce GSM.

2.3.2.2. Les SI périphériques

Dans les SI périphériques, en ce sens qu’ils ne rentrent pas tout à fait au cœur du système décisionnel en matière de GIRE actuellement, nous recensons le SIAD de l’APAL (Agence de Protection et d’Aménagement du Littoral) qui concentre notamment des données en temps réel sur des données météo-oceanographiques mais également physico-chimiques ainsi que le SI DGF (Direction générale des Forêts) qui, lui, concentre les informations relatives à l’inventaire du couvert forestier. Le SI de la DGF est en réalité un SIG (information spatialisée) qui propose une couche spatiale de référence sur la thématique du couvert forestier.

2.3.2.3. Aspects spécifiques liés à la qualité des eaux et des sols

La qualité des eaux et des sols, au moins dans le processus d’acquisition, suivent un chemin spécifique dans ce sens ou un laboratoire d’analyse concentre un certain nombre de mesures au sein de systèmes propres. Dans les cas les plus élaborés, il s’agit de LIMS (Laboratory Information Management System) et dans les autres cas, les données sont simplement stockées sous des formats de tableur (Excel ou autres tableurs). Il existe de nombreux laboratoires parfois déconcentrés ou parfois nationaux qui potentiellement concentrent de la données physico-chimique. Parmi les laboratoires d’envergure, nous identifions le laboratoire de l’INAT, le laboratoire de la DGRE et le laboratoire du CERTE. D’autres laboratoires peuvent exister de manière déconcentrée ou interne aux institutions, permettant de réaliser des mesures physico-chimiques.

2.3.2.4. Les SI décentralisés ou déconcentrés

Les CRDA, 24 au total pour la Tunisie, sont les « poumons » de l’information dans ce sens où le processus d’acquisition de l’information repose quasi-entièrement sur eux. A ce titre ils possèdent leurs propres SI dans le sens où ils possèdent leurs propres outils de capitalisation de l’information. Actuellement ce sont des systèmes simples composés de bases ACCESS ou de fichiers Excel environnés d’outils de gestion / traitement de la donnée tels que HYDRACCESS ou autres logiciels statistiques. Il conviendrait de pousser un peu plus loin l’analyse de l’état des SI sur l’ensemble des CRDA. Ce chapitre ne s’appuie que sur des échanges avec 1 seul CRDA.
## 2.3.2.5. Tableau des SI recensés (hors SI laboratoire)

### Tableau 1 synthèse des SI mono-thématiques sur la ressource en eau en Tunisie

<table>
<thead>
<tr>
<th>Nom du SI</th>
<th>Catégories thématiques</th>
<th>Données associées</th>
<th>Etat du SI</th>
<th>Organisme responsable du SI</th>
<th>Type de base de données</th>
<th>Positionnement global</th>
<th>Périmètre géographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPEAU</td>
<td>Eaux superficielles</td>
<td>Qualité, Niveau hydrométriques (pour les sondes)</td>
<td>En cours de refonte / réalisation (08/2016)</td>
<td>MEDD / ANPE / Direction du suivi des milieux environnementaux</td>
<td>PostgreSQL</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SI SECADENORD</td>
<td>Eaux superficielles, Ouvrages de stockage de l'eau (barrages...)</td>
<td>Infrastructure, Qualité, Quantité</td>
<td>Pas de SI à proprement parlé</td>
<td>SECADENORD</td>
<td>Fichiers tabulaires (Excel...)</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SISOL</td>
<td>Sols</td>
<td>Qualité, Finalité (forces motrices), Données sur les périmètres irrigués, hydromorphie</td>
<td>En cours de refonte / réalisation (08/2016)</td>
<td>MAREH / DGACTA / Ressources en sols</td>
<td>PostgreSQL</td>
<td>Ressource, Usage</td>
<td>National</td>
</tr>
<tr>
<td>BDLAC</td>
<td>Ouvrages de stockage de l'eau (barrages...)</td>
<td>Quantité</td>
<td>Fonctionnel</td>
<td>MAREH / DGACTA / Etudes</td>
<td>Autre SGBD (SIG)</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SYGREAU</td>
<td>Eaux superficielles, Eaux souterraines, Climatologie</td>
<td>Qualité, Quantité</td>
<td>Fonctionnel</td>
<td>MAREH / DGRE</td>
<td>Oracle</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>Base Météorologique</td>
<td>Climatologie</td>
<td>Quantité</td>
<td>Fonctionnel</td>
<td>INM (Institut National de la Météorologie)</td>
<td>Oracle</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SYCOHTAC</td>
<td>Eaux superficielles</td>
<td>Quantité</td>
<td>Fonctionnel mais non opérationnel</td>
<td>MAREH / DGRE</td>
<td>MySQL</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SI de la DGBGTH</td>
<td>Ouvrages de stockage de l'eau (barrages...)</td>
<td>Infrastructure, Qualité, Quantité (Outil GEORE)</td>
<td>Pas de SI à proprement parlé</td>
<td>MAREH / DGBGTH</td>
<td>Fichiers tabulaires (Excel...)</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SI APAL</td>
<td>Eaux littorales</td>
<td>Qualité, Quantité</td>
<td>Fonctionnel</td>
<td>MEDD / APAL</td>
<td>SGBD</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>BD CRDA (24)</td>
<td>Eaux superficielles, Eaux souterraines, Climatologie, Ouvrage de distribution d'eau pour l'irrigation, Sols</td>
<td>Qualité, Quantité, Finalité (forces motrices)</td>
<td>Fonctionnel</td>
<td>Ensemble des 24 CRDA</td>
<td>Fichiers tabulaires (Excel...)</td>
<td>Ressource, Usage</td>
<td>Régional ou Intermédiaire</td>
</tr>
</tbody>
</table>
2.3.3. Systèmes d’information sur les usages de l’eau et les forces motrices

<table>
<thead>
<tr>
<th>Périmètre thématique des SI « Usages &amp; forces motrices »</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumes et usages AEP</td>
</tr>
<tr>
<td>Volumes et usages assainissement</td>
</tr>
<tr>
<td>Volumes et usages irrigation</td>
</tr>
<tr>
<td>Demande en eau</td>
</tr>
</tbody>
</table>


Dans les faits, la SONEDE ne possède pas actuellement de SI central à proprement parler mais concentre les données et informations issues des systèmes de production au sein de fichiers bruts. La SONEDE a néanmoins un projet de création d’un « SIG Métier sur l’eau potable » qui devrait couvrir l’ensemble du périmètre national en matière de centralisation de la donnée sur l’eau potable. Pour la SONEDE, les informations pertinentes sont très probablement disponibles à l’échelle du site de production.

Au niveau de l’ONAS, plusieurs sous-systèmes sont recensés, notamment les systèmes NEPTUNE, CADRIN & STAD. NEPTUNE est un progiciel « métier » qui est interfacé avec STAD & CADRIN. Le système NEPTUNE est donc un système de synthèse permettant de réaliser des bilans sur les rejets et les charges polluantes. L’envergure de ce SI semble être nationale mais des incertitudes persistent sur l’emprise géographique réelle de ce système et les données qu’il permet de stocker et diffuser.

La DGGREE dispose d’une base de données sur l’eau potable sans posséder réellement de SI structuré à son niveau. La DGGREE délivre des annuaires sur les périmètres irrigués. Enfin la DGEDA constitue la structure statistique publique chargée de collecter, de traiter, d’analyser et de diffuser l’information statistique dans le domaine agricole. Elle utilise un logiciel (Cs PRO) comme outil central pour la capitalisation des données et de l’information.

Nous retiendrons que la DHMPE, dans le cadre de ses missions doit également centraliser des informations en matière de qualité des eaux, notamment eaux distribuées ou consommées. Ce SI semble plutôt être à positionner dans la catégorie des SI Locaux mais cette information reste à vérifier.

2.3.4. Les méta-systèmes de synthèse

Par méta-système de synthèse, nous entendons les SI qui visent une agrégation de sources de données différentes et/ou multi acteurs. Typiquement les observatoires sont considérés comme des méta-systèmes.

5 grands méta-systèmes sont identifiés dans notre recensement au niveau de la Tunisie. Le principal étant le SINEAU (Système National d’Information sur l’Eau) ayant pour vocation d’être le point d’entrée vers l’ensemble des données et informations sur les ressources en eau. Le SINEAU est actuellement en cours de développement et sa plateforme ne devrait concentrer que des indicateurs (et non les données brutes) issus des 3 grands SI sur la ressource en eau (SYGREAU, SISOL & COPEAU). Une partie plus détaillée reprend les enjeux du SINEAU (Chap2.8).

Le SI de l’ONAGRI et le SI de l’INS proposent des données et indicateurs statistiques sur 2 piliers importants en matière de GIRE que sont les données agricoles (état des lieux et dynamiques) et les données d’usage de l’eau (population, industrie etc...). L’état, le processus de collecte et la maturité globale de ces 2 SI ne sont pas connus des rédacteurs de ce document (pas d’information complémentaire obtenue durant l’étude).
La base de données GEORE, par son caractère « intégrateur et agrégateur » de plusieurs données et informations est considérée comme un méta-système. GEORE est le seul de ces sous-systèmes à ne pas être réellement pérennisé et exploité.

Enfin le Centre National de Cartographie et Télédétection est considéré comme un méta-système de synthèse en ce sens où les données et informations produites par le CNCT font autorité en matière de référentiel géographique à l’échelle de la Tunisie. Il constitue, dans notre vision, l’organisme de référence en matière de partage d’interopérabilité de l’information géographique. A ce titre, il transcende les systèmes de remontée de l’information.

**Tableau 2 : Synthèse des méta systèmes de synthèse en Tunisie**

<table>
<thead>
<tr>
<th>Méta Système</th>
<th>Etat du SI</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINEAU</td>
<td>En cours de réalisation</td>
<td>Système ayant vocation à centraliser l’ensemble des informations sur la ressource en eau en Tunisie</td>
</tr>
<tr>
<td>SI CNCT</td>
<td>Fonctionnel</td>
<td>Système de référence pour l’information géographique au niveau national et sur l’ensemble des thématiques</td>
</tr>
<tr>
<td>SI ONAGRI</td>
<td>Fonctionnel</td>
<td>Observatoire National de l’Agriculture ayant vocation à centraliser l’ensemble des données liées à l’agriculture</td>
</tr>
<tr>
<td>SI Environnement de l’INS</td>
<td>Fonctionnel</td>
<td>L’INS a mis en place un observatoire de l’environnement dont 1 composante porte sur l’eau.</td>
</tr>
<tr>
<td>GEORE - Gestion Optimale des Ouvrages de Rétention d’Eau</td>
<td>Fonctionnel</td>
<td>Développé sous un projet GIZ pour la centralisation d’information multiple visant la gestion des ouvrages de rétention d’eau (non maintenu)</td>
</tr>
</tbody>
</table>

2.4. **Processus de collecte, de centralisation, de validation & de contrôle**

Par processus de collecte nous entendons décrire l’ensemble de la chaîne de production de la donnée à son niveau le plus bas (collecte sur site) jusqu’à son entrée dans la base de données. Au vu de la multiplicité des SI recensés, les processus de collecte sont nombreux et assez divers au niveau de la Tunisie. Dans cette analyse nous n’intégrons pas les « méta-systèmes », ces derniers étant plus des « centralisateurs » d’information, à la différence des SI Mono-thématiques qui sont producteurs de base de la donnée et de l’information.

2.4.1. **Mode d’acquisition**

On distinguera 4 grands modes d’acquisition de l’information que sont :

<table>
<thead>
<tr>
<th>Mode d’acquisition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enquête spécifique et Imagerie satellite :</td>
<td>Essentiellement pour les données avec des fréquences de mise à jour annuelle voire pluri-annuelle</td>
</tr>
<tr>
<td>Capteur et télétransmission uniquement :</td>
<td>Pour des données temps réel</td>
</tr>
<tr>
<td>Saisie manuelle + Capteurs de télétransmission</td>
<td>Lorsqu’il y a un panachage entre les données remontées en temps réel et des processus plus manuels</td>
</tr>
<tr>
<td>Saisie manuelle sur papier uniquement</td>
<td>Lorsque que le mode de collecte est essentiellement manuel</td>
</tr>
</tbody>
</table>

L’étude sur 14 SI Mono-thématiques nationaux (y compris SYCOHTRAC) montre que majoritairement (43 % du temps) les données sont acquises in situ par des processus manuels sans réel accompagnement par des outils de saisie simplifiée (tablet, ordinateur portable etc...). Dans 29 % des cas (4 SI) les modes d’acquisition sont panachés entre saisie manuelle et capteur automatique. Il s’agit notamment de SYGREAU (DGRE), du SI de l’INM, du SIAD (APAL) et du SI de l’ONAS. Les incertitudes concernant le SI de la SONEDE font qu’il n’est pas intégré dans ce périmètre mais vraisemblablement la SONEDE dispose d’outils de gestion en temps réel.
1 seul SI (SYCOHTRAC) est recensé en totalité « Capteur ». A terme, SYCOHTRAC devrait rejoindre le périmètre global du SYGREAU. Enfin 21 % (3 SI) des modes de collecte sont réalisés par des enquêtes couplées avec de l’imagerie satellite. Il s’agit du SI de l’INS, de la DGF et de la constitution de la BD Lac de la DGACTA.

2.4.2. **Les modes de centralisation de l’information**

2.4.2.1. **Cas général**

Outre les modes de transmissions « automatiques » liés à l’installation de capteurs en temps réel, la majeure partie des échanges de données se fait actuellement par le biais d’envoi des résultats soit par envoi postal (papier / CdRom), soit par email, soit, pour la SECADENORD notamment, par communication téléphonique.

Le constat est fait que pour les remontées issues de capteurs en temps réel, certains problèmes de compatibilité lors de la migration des données vers la base centrale peuvent se présenter (cas de SYCOHTRAC). Pour les remontées de données lors de transferts via voie postale ou email, les données sont ressaisies dans l’application ou le système centralisateur. Il n’existe pas d’import en masse ou automatique de ces données à partir d’un format d’échange défini. Cette situation tend à fragiliser le processus par les doubles (voire triples) saisies qui peuvent apparaître dans le processus de centralisation de l’information.

2.4.2.2. **Cas spécifique des applications développées dans le cadre du SINEAU**

Ces problématiques de saisie / remontée de l’information et les enjeux sous-jacents sur la fiabilité des données centralisées ont bien été identifiés dans le projet SINEAU. Aussi, le mode de saisie retenu pour les applications COPEAU, SYGREAU et SISOL repose sur la mise en place d’un portail web de saisie à disposition des producteurs de données (CRDA notamment) afin que les résultats saisis s’insèrent directement dans la base centrale sans autre intervention. Si le choix du full web pour la saisie des informations directement dans la base de données par les « producteurs primaires » de la donnée permet de limiter les duplications de saisie et les erreurs associées, ce choix pose néanmoins mécaniquement la question de l’accès à internet pour l’ensemble de ces « producteurs primaires » or il apparaît que pour certains CRDA, les accès à distance restent souvent fluctuants. Cet état de fait peut, à terme, fragiliser la mise à jour de la base centrale.

2.4.3. **Validation & contrôle**

Dans l’analyse que nous avons pu faire et sur ce qui nous a été donné de voir, la grande majorité des SI ne possède pas système de contrôle / validation de la donnée lors de son stockage. La validité est généralement assurée par la mise en place de procédures dans les modes de collecte et la validation reste assurée majoritairement par du « dire d’expert » a posteriori. Néanmoins, nous retiendrons que dans les spécifications des systèmes intégrant le périmètre du SINEAU, à savoir SYGREAU, SISOL & COPEAU, des procédures de contrôle à l’intégration ont été spécifiées et implémentées.
2.5. **Focus sur des flux d’information**

2.5.1. **Flux d’informations au sein de la DGRE pour SYGREAU**

Les CRDA sont à la source de la collecte de l’information sur les ressources en eau et ce sont eux qui viennent alimenter le système central du SYGREAU. Dans le processus de collecte, les équipes des CRDA ont les compétences en matière de « mesures » in situ et possèdent des manuels de bonnes pratiques qui restent plus ou moins bien maintenus. Les mesures de terrain sont parallèlement saisies dans une base de données déployée par l’IRD (HYDRACCESS) et qui vient en remplacement d’HYDROM & PLUVIÔM (utilisés historiquement). HYDRACCESS permet de calibrer les courbes hauteurs / débits et permet d’administrer la donnée sur les ressources en eau au sens large. Avant la mise en œuvre du SYGREAU refondu dans le cadre du SINEAU, ces données sont ressaisies sous EXCEL puis transmises par voie postale vers la DGRE qui ressaisit les données à son tour. Dans ce processus, l’information ne va que dans le sens de la remontée vers la DGRE. Les informations saisies dans le SYGREAU ne sont pas redescendues vers les CRDA. En conséquence, les CRDA se servent principalement de leur SI interne (HYDRACCESS) comme base de référence pour leurs propres évaluations.

**Dans la nouvelle version du SYGREAU, les processus de transmission par mail seront supprimés et la saisie sera effectuée directement par les opérateurs à travers le portail SYGREAU** (full web). Cette saisie décentralisée restera conditionnée à un accès internet qui reste fluctuant au niveau de certains CRDA. Les informations sont prévues pour être redescendues vers les CRDA notamment à travers un portail Web sécurisé. Des formations sur le nouveau portail SYGREAU ont déjà eu lieu auprès de certains CRDA.

Parallèlement, le Système SYCOHTRAC, qui monitorise un réseau de mesure en temps réel, souffre de problèmes de centralisation / consolidation des données au niveau central. Ces données ne sont pas partagées par le système du SYGREAU actuellement mais un projet est en cours pour permettre ces passerelles et l’alimentation de la base de données centrale.

Figure 12 schéma des flux d’information autour de SYGREAU (ante refonte du SYGREAU par SINEAU)
2.5.2. *Flux d’information sur les barrages et transferts*

La DGBGTH et la SECADENORD échangent spécifiquement des données en vue des prévisions de transfert d’eau vers les destinataires finaux que sont la SONEDE (Eau potable) et les CRDA (Irrigation). La DGBGTH centralise des informations quotidiennes sur les niveaux dans les réservoirs ainsi que sur la qualité des eaux dans le réservoir. Les informations sont transmises à la SECADENORD sous format .pdf (échange mail) quotidiennement pour permettre sa planification dans la distribution d’eau. De la même manière, la SECADENORD procède à des mesures physico-chimiques sur son réseau afin de s’assurer de la qualité des eaux délivrées vers ses clients. Les mesures sont effectuées par des agents de terrain et les informations sont remontées par téléphone vers la SECADENORD.

![Figure 13 schéma des flux d’information sur les barrages et transferts](image)

2.6. *Architecture et infrastructure des SIEAU*

2.6.1. *Le Système de centralisation de l’information*

*Les technologies utilisées pour stocker les informations sont variables en fonction des SI identifiés.* Nous retiendrons que les SI COPEAU, SISOL et le portail SINEAU sont tous sous un SGBD PostgreSQL qui est un SGBD « Open source » (libre). SYGREAU, pour des raisons historiques est maintenu sous une base ORACLE. Les bases de données au niveau des CRDA sont sous ACCESS et la gestion des informations liées aux barrages et transferts sont effectués au mieux sous EXCEL.

*La majeure partie des bases de données* touchant à la ressource en eau au sens large sont hébergées au sein de l’IRESA. C’est donc l’IRESA qui joue le rôle de Direction des Systèmes d’Information pour l’ensemble des portails nationaux. Son rôle est d’importance dans la diffusion, l’accès, le maintien et la stabilité des applications en service courant. L’IRESA est membre du comité de suivi du SINEAU.

2.6.2. *La diffusion et l’échange de données*

La diffusion et l’échange des données entre les différents acteurs de l’eau restent délicats à apprêhender. D’un point de vue technique, il n’existe pas réellement d’interopérabilité entre les systèmes à ce jour. Les échanges sont donc réalisés par le biais d’échange de fichiers transmis par email. D’un point de vue global,
toute demande d’information concernant la mise à disposition d’information pour des tiers doit transiter par la direction concernée. Les échanges entre les institutions font, la plupart du temps, l’objet de convention entre les institutions.

2.7. Intégration de la composante géographique

La composante géographique est assez diffusée à travers la mise à disposition d’outils SIG dans beaucoup de secteurs plus larges que le secteur de l’eau. *Les référentiels géographiques ne sont pas réellement regroupés.* Si le CNCT reste un organisme de référence en matière de diffusion de l’information géographique sur un certain nombre de domaines, il n’y a pas, à notre connaissance, d’ambition actuellement sur la construction et la diffusion d’un référentiel géographique sur l’eau à l’échelle de la Tunisie. Néanmoins, le SINEAU envisage la consolidation d’un certain nombre d’informations géographiques communes aux différents secteurs de l’eau. Rappelons également que le projet CRET ambitionne un « livrable » spatial pour la gestion.

2.8. Le SINEAU Tunisie

2.8.1. *Le protocole SINEAU*

Avant de passer en phase opérationnelle, le SINEAU a fait l’objet d’un protocole d’accord signé par plusieurs Ministères Tunisiens à savoir :

- Ministère de l’Agriculture et des Ressources Hydrauliques
- Ministère de l’Environnement et du Développement Durable ;
- Ministère de la Santé Publique ;
- Ministère de l’Enseignement Supérieur ;
- Ministère du Développement et de la Coopération Internationale ;


![Figure 14 illustration des attentes du SINEAU - Mr Lotfi Nacef 2011](image)

2.8.2. *Cadre global du SINEAU*

Le SINEAU est un outil fédérateur des systèmes existants sur les ressources en eau et les sols (pollution, hydromorphie, salinisation) qui vise à répondre sous un même portail internet aux enjeux suivants :

- *Définir et publier des référentiels communs* et des interfaces d’échange d’information entre les systèmes informatiques des contributeurs de l’eau (y compris service de couches cartographiques en ligne) ;
Permettre aux différents services de développer un contrôle de la qualité sur les données produites en croisant leurs données avec celles d’autres services

Fournir un portail sécurisé d’accès aux applications existantes ;

Fournir un portail public d’information général sur le secteur de l’eau (qui reprendrait et développerait les fonctions actuelles du SEMIDE en Tunisie) ;

Mettre en place des fonctionnalités facilitant la publication de nouvelles données,

Produire des informations valorisant les données existantes en les combinant (cartes thématiques, tableaux de bord, études...).

Recenser et réunir toutes les informations disponibles et expériences acquises par les partenaires à l’échelle locale, régionale et nationale dans la gestion de l’eau afin d’en assurer l’accessibilité à tous.

Faciliter l’accès à l’information, développer le partage de l’information, les produits communs et les programmes de coopérations euro-méditerranéens.

2.8.3. **Composantes logicielles du SINEAU**

Les principales composantes logicielles de base relatives au portail SINEAU se résument comme suit :

- Système de Gestion de Base de Données Relationnelle ;
- Entrepôt de toutes les données nécessaires pour SINEAU ;
- Base de données datawarehouse (entrepôt de données) et logiciel de reporting web nécessaires pour la gestion des indicateurs à l’échelle nationale ;
- Système de messagerie - Groupware nécessaire pour la communication entre les utilisateurs du système ;
- Système de sauvegarde et d’archivage ;
- Système SIG

Outre ces éléments, c’est bien une orientation « full web » qui a été retenue pour la mise en service du SINEAU.

2.8.4. **Pilotage du SINEAU**

Pour un meilleur fonctionnement du système d’information, il est proposé d’installer trois niveaux de pilotage du système

- Comité national de SINEAU (Pilotage stratégique)
- Comité technique (Suivi et exécution)
- Les groupes de travail techniques (groupes de travail thématiques) : harmonisation, définitions, codification, niveau de confidentialité, droits d’accès, cas d’utilisation.
2.8.5. *Etat actuel du SINEAU*

Le SINEAU Tunisie est en cours de déploiement. À ce stade l’environnement technique du SINEAU dans sa première tranche est en cours d’opérationnalisation sous un SGBD de type PostgreSQL (SGBD Libre). En plus de ses fonctions propres, le projet du SINEAU se concentre également auprès de 3 SI Eau que sont COPEAU (Qualité des eaux), SISOL (Ressources en Sol) et SYGREAU (Ressources en eaux de surface, souterraines et climatologie) pour en assurer la refonte complète. *Le SINEAU Tunisie est donc clairement orienté actuellement sur la centralisation des données touchant la « ressource en eau » et, à travers la refonte de ces 3 sous-systèmes, se donne comme ambition de réellement renforcer l’aspect « Banque nationale des données sur les ressources en eau ».*

Le SINEAU est placé sous la responsabilité du Ministère de l’Agriculture, de la ressource hydraulique et de la Pêche avec un pilotage dévolu au BIRH (Bureau d’Inventaire des ressources hydrauliques) en charge de le faire vivre et de l’administrer. Le système projeté est de type "portail d’informations Intranet/Internet" qui vise à fédérer les données sur l’eau et assurer l’interconnexion de tous les systèmes des contributeurs de l’eau (les bases de données) au plan national et leur mise à la portée des spécialistes, des décideurs et du public. Nos observations sur le staffing du BIRH semblent indiquer que le BIRH n’est pas totalement en situation de « prendre en main » le SINEAU d’un point de vue « technique ».

Les données sur les usages de l’eau n’y sont pas représentées à ce stade mais devraient intégrer le périmètre SINEAU lors de phases ultérieures, notamment SECADENOR et DGBGTH avec lesquels le processus d’intégration semble avancé.
2.8.6. Définition du référentiel commun

Une étude de conception détaillée concernant le référentiel commun du SINEAU a été fournie en fin d’année 2015. Cette étude porte essentiellement sur la portée des référentiels communs mais également sur les aspects organisationnels de ce référentiel commun. Dans cette étude de conception détaillée, il est clairement fait référence à l’expérience française du SANDRE (Service d’Administration Nationale des Données et Référentiels sur l’Eau). Ce référentiel commun traite :

- Des référentiels géographiques et de leurs corollaires (Systèmes de projection, métadonnées, codification, modalités techniques d’échange et de mise à jour)
- De la codification des listes de référence (nomenclatures partagées)

Cette étude du référentiel commun traite également des modalités d’échange et de diffusion de ce référentiel auprès de l’ensemble des acteurs en établissant une synthèse des services du référentiel commun, leur mode d’accès, de diffusion et de mise à jour.

Figure 16 : Schéma fonctionnel global du SINEAU Tunisie
<table>
<thead>
<tr>
<th>Référentiel Communs</th>
<th>Mécanismes de Création / Administration</th>
<th>Mécanisme de Consultation</th>
<th>Mécanismes d'Extraction</th>
<th>Mécanismes de Mise à Jour des BDD</th>
<th>Mécanismes de Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listes de référence</td>
<td>Listes référentielles</td>
<td>Via des services web WFS ou par consultation directe du site web</td>
<td>Via un service web ou Export du site web</td>
<td>Synchronisation entre les bases de données composant le SINEAU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Métadonnées des listes</td>
<td>Consultation directe du site web</td>
<td>Export du site web</td>
<td>Synchronisation entre les bases de données composant le SINEAU et Services DNA</td>
<td></td>
</tr>
<tr>
<td>Données géographiques</td>
<td>Données géographiques</td>
<td>Via des services web (WMS-WFS) ou par consultation directe du site web</td>
<td>Vis service Web ou Export du site Web</td>
<td>Notification aux Abonnés</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Métadonnées des données Géographiques</td>
<td>Consultation directe du site web</td>
<td>Export du site Web</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documents de référence</td>
<td>Documents</td>
<td>Consultation directe du site web</td>
<td>Export du site Web</td>
<td>Consultation directe du site web</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Métadonnées des documents</td>
<td></td>
<td></td>
<td>Moissonnage (mécanisme permettant de collecter des métadonnées sur un catalogue distant)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 17 résumé du référentiel commun extrait de l’étude dédiée en Tunisie

2.8.1. **Aspects fonctionnels et organisationnels du référentiel commun**

Cette étude sur le référentiel commun du SINEAU traite également des aspects fonctionnels et organisationnels pour la gestion et l’administration des référentiels. Si les procédures d’administration des données sont très bien décrites dans cette étude, la responsabilité en matière d’administration des données est renvoyée vers le comité SINEAU. Extrait : « Les fournisseurs de données non-administrées par SINEAU, sont des institutions, services ou personnes qui ont signé un protocole avec le comité du SINEAU au titre duquel ils s'engagent à assurer la tenue à jour des données faisant partie du référentiel commun du SINEAU et dont ils sont producteurs. ».

Nous retiendrons que dans le protocole SINEAU (version décembre 2009), sont associés :
- Le Ministère de l’Agriculture, de la ressource hydraulique et de la pêche,
- Le Ministère de l’environnement et du développement durable,
- Le Ministère de la coopération internationale,
- Le Ministère de la Santé publique
• Le Ministère de l’enseignement supérieur et de la recherche,
• L’Institut national de météorologie,
• L’Union Tunisienne de l’agriculture et de la pêche,
• La société tunisienne d’électricité

Figure 18 schéma du processus de validation / diffusion du référentiel commun du SINEAU tirée de l’étude dédiée
2.9. Synthèse de l’analyse des SI dans le domaine de l’eau à l’échelle de la Tunisie

2.9.1. Synthèse globale

Sur le volet ressources en eau, les SI identifiés sont très hétérogènes dans leur « maturité ». On note ainsi un processus de structuration et de renforcement majeur sur les 3 Systèmes que sont COPEAU (Qualité des eaux), SISOL (Qualité des ressources en sol) et SYGREAU (état qualité et quantité de la ressource en eaux de surface et souterraines) en lien avec le projet SINEAU. Ces 3 SI ont pour ambition de devenir les « banques de données de référence nationales » et les infrastructures techniques des SI déployés sont robustes.

Les SI traitant de la ressource en eau « Stockée » dans les barrages et retenues collinaires et « transférée » via les systèmes de canaux sont clairement les parents pauvres et la démarche « SI » n’est clairement pas initiée auprès des institutions responsables (DGBGTH et SECADENORD notamment) même si des projets (en cours ou passés) tentent de répondre à cette problématique (Base des retenues collinaires DGACTA, GEORE...).

Les Systèmes de télémétrie ou monitoring en temps réel de la ressource en eau semblent être opérationnels pour certaines mesures au niveau du SYGREAU mais d’autres SI périphériques (SYCOHTRAC notamment) ne sont pas totalement opérationnels, au moins dans leur déploiement, rendant le partage de cette information au niveau des systèmes difficiles. Les systèmes de remontée en temps réel de l’INM semblent très robustes.

Les SI traitant des « usages » de l’eau au sens large semblent être assez robustes à une échelle locale (Station de pompage / usines de traitement ...) mais semblent manquer de consolidation à l’échelle nationale dans un SI agrégateur de l’ensemble de ces données.

En ce qui concerne les SI traitant des « forces motrices » (population, dynamique agricoles etc...) les informations statistiques semblent être régulièrement remontées et évaluées. Si l’INS semble disposer d’un SI robuste, la DGEDA ne semble être équipée de la même manière mais les informations transitent vers le site de l’INS qui publie les résultats de statistique agricole. Ces SI n’ont toutefois été enquêtés que partiellement et ces affirmations méritent d’être affinées par des enquêtes complémentaires à l’avenir.

Du point de vue de l’information géographique, on recense plusieurs sources de données de référence au sein des différentes institutions investies plus ou moins directement dans le SINEAU. Si les acteurs de référence en matière de données géographiques « de base » sont clairement identifiés (CNCT, Office Topographie & cadastre, DGF, l’AFA...), des données spatiales d’importance majeure pour les processus GIRE en général semblent assez peu partagées. Nous retiendrons que la carte agricole reste peu partagée, de même que d’autres référentiels tels que l’inventaire des collinaires, Cartes des terres agricoles, Cartes des Systèmes d’Utilisation des Terres (SUT), Cartes de la dégradation et de la conservation / gestion durable des terres disponibles au sein de la DGACTA. Nous retenons également qu’un projet CRET (cartographie de Ressources en Eau de la Tunisie) vise à établir une cartographie de référence pour la Tunisie. Le SINEAU se donne comme ambition de mettre en place un référentiel commun, y compris sur l’information géographique et propose les modalités « techniques » et « fonctionnelles » pour la mise à jour de ces référentiels. En première approche, nous observons que le Ministère de la défense nationale, et le CNCT qui en est dépendant, n’est pas associé initialement à la démarche alors que cette institution reste garante d’un certain nombre de référentiels géographiques.

Sur le SINEAU Tunisie, les choix techniques sont mis en cohérence avec la refonte des sous-systèmes. Ce développement « intégré » assure la cohérence entre les différents systèmes dépendant du SINEAU. Le SINEAU prévoit d’élargir son périmètre vers d’autres systèmes (notamment pour la DGBGTH et la SECADENORD). L’importance de la mise en œuvre d’un référentiel commun est identifiée et initié au sein du SINEAU. La mise en place de ce référentiel commun directement sous le COMITE SINEAU constitue un gage de « contrainte de respect du référentiel » pour l’ensemble des SI actuels et futurs qui peut effectivement garantir une mise en cohérence systématique sur les nouveaux développements. Le périmètre du référentiel commun couvre bien l’ensemble des périmètres attendus à savoir référentiel physique,
référentiel de codification, référentiel documentaire. Néanmoins, cette initialisation du référentiel commun est actuellement uniquement technique dans ses modalités de mises en œuvre et, à notre connaissance, il n’existe pas de document cadre de type « schéma national des données sur l’Eau » qui fixe et identifie clairement quelles institutions sont en charge de quelles données de référence et à quelle fréquence.

2.9.2.  Synthèse sur les processus de collecte

Le processus de collecte de la donnée s’appuie quasiment tout le temps sur des équipes décentralisées (notamment pour le monitoring des ressources en eau) et la remontée d’information via de l’automatisation reste marginal. Du point de vue centralisation de l’information vers la base centrale, les flux sont assez hétérogènes mais la double voire triple saisie pour passer d’un niveau à un autre reste le cas général. Cet état de fait empêche une consolidation « sereine » des données à l’échelle nationale et « ralentit » les flux d’information. La qualité des données et surtout la « confiance » dans la donnée sont des enjeux majeurs et un point parfois critique. Ce processus est identifié dans la refonte des applications du SINEAU qui propose désormais une saisie « en ligne » avec une connexion directe du niveau régional vers le national et une alimentation « au fil de l’eau » de la base de données. Ce choix, s’il se comprend d’un point de vue technique, reste néanmoins très dépendant d’une accessibilité à internet pérenne et stable par l’ensemble des contributeurs déconcentrés, ce qui ne semble pas être toujours le cas. Quoi qu’il en soit, la mise en place d’un référentiel commun devrait permettre, à terme, d’établir des formats d’échange standardisés (format pivots entre bases de données) qui garantissent l’interopérabilité entre les différents niveaux. Il sera nécessaire que le comité SINEAU prenne bien en charge ce point. L’implémentation de ces formats d’échange par la suite au sein des multiples systèmes déconcentrés risque néanmoins d’être un processus assez long pour une mise en œuvre opérationnelle. Dans cette optique, il sera important que tout développement d’outils touchant de près ou de loin le SINEAU ou ses bases corollaires soit mis en conformité vis-à-vis du référentiel commun ou, éventuellement, que le SINEAU intègre des développements de modules spécifiques à destination des producteurs déconcentrés en même temps qu’il refendra un système. Ces modules spécifiques pourraient venir en remplacement des systèmes locaux actuellement utilisés et pourraient, de surcroît, obtenir une labellisation de « compatibilité SINEAU ».

2.9.3.  Echanges et partage des données

Les échanges au sein d’une même institution peuvent parfois être compliqués en raison des freins que représentent les flux d’échanges actuels. Par ailleurs nous retiendrons que si le processus de remontée de l’information est identifié, le processus de redescente de l’information n’est pas identifié. Les échanges entre les institutions peuvent souffrir des mêmes maux. Ils restent néanmoins cadrés par des conventions de partage de l’information entre les différentes institutions et le mécanisme de coopération prévaut. Enfin l’accessibilité des données brutes pour un public plus élargi reste très largement conditionnée à des demandes officielles auprès des institutions en charge de centraliser la donnée. La donnée n’est donc pas ouverte vers l’extérieur facilement. Les choix de diffusion du SINEAU restent dans cette optique puisque seuls des indicateurs seront diffusés à travers le portail SINEAU. Les demandes de données brutes seront également traitées par le SINEAU qui émettra une demande aux partenaires concernés. Sans parler des données brutes, il sera néanmoins fondamental que le SINEAU diffuse librement ses référentiels communs (géographiques et codification des nomenclatures notamment) afin de s’assurer que l’ensemble des travaux, études, projets à venir soient systématiquement mis en conformité avec ces référentiels et que les organismes en charge de suivre ces opérations puissent fournir le cadre normé des rendus attendus.
2.10. Synthèse, recommandations, points d’ attentions

2.10.1. Analyse SWOT

Nous avons choisi de conduire l’ analyse SWOT à l’échelle globale de la Tunisie et pour l’ écosystème « SIEau » au sens large.

2.10.1.1. Les Forces

• La mise en œuvre du SINEAU au sens large, la prise en compte de la problématique du référentiel commun et sa diffusion large d’un point de vue spécifique. Les garanties d’une interopérabilité entre les systèmes sont posées.
• La mise en place d’une structure de pilotage pour le SINEAU avec un investissement fort des différentes Directions Générales.
• La refonte des applications SYGREAU, SISOL et COPEAU avec prise en compte de règles « métier » pour garantir la validité des informations stockées dans ces banques de données nationales.
• La pratique « historique » en matière d’acquisition de données sur site par les équipes techniques qui donne un gage de validité à la donnée acquise.
• Le très fort « enthousiasme » suscité par le SINEAU au niveau national et l’inscription du SINEAU dans un cadre stratégique global de gestion intégrée des ressources en eau.
• Les choix techniques du SINEAU orientés vers l’Open Source.
• La grande maturité de l’INM en matière d’acquisition des données météorologiques.
• La présence d’un institut de référence en matière d’information géographique (CNCT).
• La très grande maturité de l’IRESA en matière de gestion d’infrastructure SI.

2.10.1.2. Faiblesses

• La faiblesses des SI orientés sur les ressources en eau stockées et transférées (DGACTA, DGBGTH et SECADENORD).
• Le périmètre encore limité des bases de données faisant l’objet d’une refonte ou d’une intégration dans le SINEAU.
• La non-opérationnalisation du référentiel commun à ce stade qui freine les flux d’information et génère des erreurs par la multiplication des ressaisies.
• La prise en compte trop faible des niveaux décentralisés en responsabilité de collecter l’information et la non-fourniture d’outils et moyens adaptés pour la collecte / centralisation / remontée de l’information vers les bases centrales. Le renforcement des SI centraux devrait « accélérer » les flux d’information et les producteurs à la base de la donnée semblent sous-équipés pour faire front à cette densification du flux d’information et de responsabilité.
• Le périmètre des données géographiques dans le SINEAU reste restreint.

2.10.1.3. Opportunités

• L’initiative du SEMIDE à l’échelle de la Méditerranée, leur retour d’expérience et leur accompagnement tout au long du processus sont un atout important.
• Les inspirations du référentiel commun du SINEAU sont assez fortement issues des travaux initiés par le SANDRE dans le cadre du SIEAU France et les partages d’expérience en la matière sont possibles (et souhaitables).

2.10.1.4. Menaces

• Les choix de développement en full web uniquement répondent à beaucoup de questions mais restent assez peu adaptés pour des opérations de calcul ou modélisation complexes et restent assez contraignant pour la saisie et l’échange de données. Le processus de saisie décentralisé mis en place pour les composantes du SINEAU est plus restrictif et peut faire l’objet d’une « non-adhésion » au niveau local (Accompagnement du changement nécessaire). De plus l’interopérabilité est garantie par la plateforme SINEAU seulement et ne laisse donc pas de place pour une compatibilité avec des SI tiers.
• Le BIRH ne semble pas encore tout à fait en situation (matérielle, humaine et formation) de s’accaparer le rôle de gestionnaire et administrateur du SINEAU qui va demander un investissement conséquent sur beaucoup de fronts (Gestion et diffusion des référentiels, diffusion des outils et méthodes pour la collecte des données, diffusion des spécifications pour rendre compatible toute application avec le SINEAU, administration et gestion des formats d’échanges...).

• Si le SINEAU semble techniquement robuste et outre la mise en place d’une structure de pilotage, aucun instrument de pilotage du SINEAU (indicateurs de performance sur le SINEAU lui-même, indicateurs de gouvernance etc...) ne semble avoir été spécifié. Il est important que le SINEAU se dote d’indicateurs stratégiques pour agir (ou réagir) en fonction de ces indicateurs.

• Il n’existe pas de « Schéma National des Données sur l’Eau » au niveau de la Tunisie qui fixe et identifie clairement quelles institutions sont en charge de quelles données de référence, à quelle fréquence, avec quels moyens et sous quel horizon. Ce point reste fondamental pour garantir que les moyens sont mis en œuvre au regard des missions confiées.

• L’ensemble des développements informatiques du SINEAU ont été réalisés en externe sans réelle maitrise sur le développement effectué (d’un point de vue « choix technique » et « implémentation de ces choix techniques »). Chaque « anomalie » devra donc faire l’objet d’un développement externalisé. La maintenance applicative sera donc exclusive.

2.10.2. Les points d’attention et recommandations

A travers ces analyses nous listons les recommandations et points d’attention suivants :

• Entreprendre une analyse des données historiques au niveau du SYGREAU, COPEAU et SISOL, proposer une méthode de validation des données stockées, qualifier les données dans ces bases de données et ouvrir les données vers un large public.

• Lancer rapidement la mise à niveau des SI de la SECADENORD et de la DGBGTH. Veiller à les rendre compatibles avec le référentiel commun du SINEAU et à intégrer le schéma DSI de l’IRESA.

• Préparer dès à présent l’intégration de la SONEDE et de l’ONAS dans le SINEAU. Veiller à les rendre compatibles avec le référentiel commun du SINEAU et à intégrer le schéma DSI de l’IRESA.

• Finaliser le référentiel commun et diffuser rapidement vers l’extérieur les spécifications techniques de mise en conformité avec le référentiel SINEAU. Développer un « label » de compatibilité SINEAU délivré pour toute application capable de s’insérer ou dialoguer avec le SINEAU.

• Instaurer des règles en matière de développement de SIeau pour rendre compatibles les développements ultérieurs et organiser la concertation avec l’ensemble des acteurs concernés par des développements éventuels (APAL ...).

• Réaliser une étude sous l’égide du comité SINEAU visant à établir un schéma directeur des données sur l’eau qui fixe les responsabilités en matière de collecte de données et de garantie de maintien des référentiels (notamment géographique). Intégrer le CNCT dans la démarche. Ce schéma doit intégrer l’ensemble des composantes (métiers et infrastructure SI) et doit se rendre compatible avec le Schéma Directeur des Systèmes d’Information de l’IRESA.

• Identifier l’information Géographique comme un thème « à part » dans le SINEAU en construisant une base de données nationale géographique sur l’eau associant l’ensemble des partenaires clés. Diffuser les référentiels géographiques vers l’extérieur pour s’assurer de son partage par le plus grand nombre et ainsi limiter les livrables « non compatibles ».

• Doter le SINEAU d’indicateurs de performance et de gouvernance pour « manager » le SINEAU dans sa phase de mise en routine. Rendre publics ces indicateurs.

• Accompagner les niveaux décentralisés dans la prise en main du SINEAU et dans la conduite de leurs activités de mesure, de collecte et d’acquisition des données en les associant étroitement dans les instances techniques.

• Renforcer le BIRH sur ses moyens techniques, humains et formation pour garantir ses missions « centrale » dans le SINEAU notamment son administration des référentiels communs et l’animation de groupes de travail. La réactivité dans la mise à jour et la diffusion des référentiels communs (nombre, périodicité etc...) peuvent être un indicateur pertinent pour le SINEAU.
• Réaliser une étude sur le « coût » de la donnée, de son acquisition jusqu’à son administration jour par jour pour établir un plan stratégique & financier sur le coût du maintien du SINEAU en périmètre constant et établir les scénarios financiers sur un accroissement du périmètre d’acquisition.
• Veiller à ne pas faire du SINEAU un objet uniquement technique mais bien une plateforme nationale d’échange, de partage et d’interopérabilité des données intégrant également une dimension de dialogue entre les partenaires et les utilisateurs finaux.
• Organiser des sessions d’échange avec les institutions françaises, notamment ONEMA (en charge de l’administration des bases de données nationales sur l’eau) et le SANDRE (entité en charge de l’administration et la diffusion du référentiel commun en France).

2.10.3. Bilan global

Le SINEAU Tunisie constitue une réelle plus-value et une chance pour le secteur du développement des SIEau en Tunisie. L’ensemble des questions ayant trait à la gestion des référentiels et à la nécessaire définition d’un langage commun est identifié et d’ores et déjà abordé. Même si on peut reprocher que les développements des SI aient été engagés avant la définition de ce langage commun, le fait que les « questions » soient posées et que les solutions techniques soient engagées montrent que le SINEAU prend une place centrale dans le dispositif plus global de gestion intégrée des ressources en eau en Tunisie. La création de cet écosystème par le biais du SINEAU est une étape nécessaire mais ne constitue qu’un « début » et l’administration du SINEAU au sens large est une question importante qui va se poser pour les années à venir, notamment pour son fonctionnement en rythme « courant ». L’aspect « diffusion large » des référentiels est un point important pour la réussite de la démarche. Il est important à nos yeux de renforcer également le processus d’acquisition des données sur le terrain, base fondamentale de la donnée, pour assurer une mise à jour régulière. Enfin, dans notre vision, nous plaiderions pour une ouverture complète des données sur les ressources en eau afin de partager ces données et s’assurer de la simplification des tâches de mise à disposition. En ce sens, nous pensons qu’il y a une opportunité à court / moyen terme pour publier les banques de données nationales sur l’eau de la Tunisie.
3. SYSTEMES D'INFORMATIONS SUR L'EAU EN ALGERIE


3.1. Rappel des éléments de contexte

3.1.1. Le programme EAU I

Le programme EAU I résulte d'une coopération bilatérale entre l'Union Européenne et l'Algérie. Ce programme s'est déroulé sur la période 2007 – 2011 et avait pour principaux objectifs :
- De contribuer à la satisfaction durable de la demande en eau
- De restaurer l'image de qualité des services du secteur
- D'améliorer la gestion intégrée des ressources
- De favoriser l'économie ainsi que la sauvegarde de la ressource et du milieu.

Les réalisations qui ont découlé de la mise en œuvre de ce programme sont :
- L'Actualisation du Plan National de l'Eau
- L'Amélioration du cadre institutionnel, réglementaire, juridique, financier, humain, de communication et de l'information
- Le Développement d'outils dynamiques et cas concrets d’opération, d’entretien et gestion de la maintenance et des procédés.

Pour notre sujet, nous retiendrons que dans le cadre de l'actualisation du plan national de l'eau, une base de données spécifique au PNE a été réalisée.

3.1.2. Le programme EAU II (coopération bilatérale Union Européenne – Algérie)

Le programme EAU II (2012 – 2014) s'inscrit dans la continuité du précédent programme Eau I. Le programme EAU II a pour objectif global « d'appuyer et de soutenir la stratégie algérienne d’assainissement en matière de protection des ressources en eau et de contribuer, d’autre part, à la réduction de la prévalence des maladies à transmission hydrique ». Il se distingue du précédent programme par la priorité accordée à l’activité assainissement. 5 axes prioritaires sont identifiés :

- **Axe 1 : Planification stratégique** : avec notamment la stratégie de lutte contre les inondations, le schéma national de développement de l’assainissement, la stratégie d’assainissement en zone rurale et la cogénération
- **Axe 2 : Planification budgétaire** : avec la modernisation des systèmes budgétaires / cadre des dépenses à moyen terme, le Système d’information dédié à la planification (SIP), les outils pour la maitrise des coûts d’investissement, l’audit des performances
- **Axe 3 : Amélioration des capacités humaines** : avec la mise à disposition d'activités de formation, de diffusion de mallettes pédagogiques
- **Axe 4 : Gestion des infrastructures** : par le développement et la mise en œuvre de la gestion patrimoniale SIG, la domainialisation et la télégestion, la diffusion de guide et documents cadre normatifs. Activités essentiellement à destination de l’ONA.
- **Axe 5 : Qualité de l’eau** : par le développement des équipements pour le laboratoire central de l’ONA.
3.2. Cartographie des acteurs impliqués dans la constitution des SIEau

3.2.1. Le Ministère des Ressources en Eau et de l’Environnement

Le Ministère des Ressources en Eau et de l’Environnement (MRE) concentre l’ensemble des problématiques liées à la gestion intégrée des ressources en eau au niveau de l’Algérie. Que ce soit directement au niveau du ministère ou à travers des établissements publics sous tutelle du ministère, la très grande partie des données et informations sont actuellement centralisées au niveau de ce ministère. L’ensemble du « cycle de l’eau » (« grand cycle » naturel et « petit cycle » urbain) est géré ici.

3.2.1.1. Les principales directions du ministère

Directement au niveau du ministère, l’entité DMRE est chargée notamment :

- D’évaluer et de mettre en œuvre la politique nationale en matière de production et stockage de l’eau,
- De superviser les études et réalisation en matière d’ouvrage et d’équipement de mobilisation et de transfert des eaux souterraines et superficielles,
- De proposer des normes, règlements et conditions d’exploitation des ouvrages et des ressources en eau,
- D’initier et mener des actions visant le développement des ressources en eau non conventionnelles.

La DAEP est chargée des questions liées à l’eau potable au sens large et plus particulièrement

- De définir les actions à mettre en œuvre pour assurer la couverture des besoins en eau potable des populations et des besoins de l’industrie ;
- De suivre et de contrôler les programmes d’études et de réalisation des infrastructures d’alimentation en eau ;
- D’élaborer et de suivre la réglementation technique en matière d’étude, de réalisation et d’exploitation des ouvrages en eau ;
- De fixer les normes d’exploitation et d’entretien des réseaux et ouvrages de production et de distribution d’eau à des fins domestiques et industrielles ;
- D’orienter, d’animer et de contrôler l’activité et le développement des organismes relevant du ministère chargé de l’exploitation et de la distribution de l’eau ;
- De veiller à la sauvegarde, à la préservation et à l’utilisation rationnelle des ressources en eau ;
- De veiller au fonctionnement normal des infrastructures et des installations de production et de distribution d’eau ;
- D’initier et de mener toute réflexion et étude sur la conduite et la mise en œuvre de la réforme du service public de production et de distribution d’eau.

La DAPE est en charge des questions liées à l’assainissement et de protection de l’environnement (au regard des rejets notamment) au sens large et plus particulièrement

- D’initier, en relation avec les services et structures concernés, toute action visant la protection et la préservation des ressources hydriques contre toute forme de pollution ;
- De définir et de mettre en œuvre la politique nationale en matière de collecte, d’épuration, de rejet et de réutilisation des eaux usées et pluviales ;
- De suivre et de contrôler les programmes d’études et de réalisation des infrastructures d’assainissement ;
- D’élaborer et de suivre la réglementation technique en matière d’étude, de réalisation et d’exploitation des ouvrages d’assainissement ;
- De fixer les normes d’exploitation et d’entretien des réseaux de collecte des eaux usées et pluviales et des systèmes d’épuration ;
- D’orienter, d’animer et de contrôler l’activité et le développement des organismes relevant du ministère, chargés de l’activité de l’assainissement ;
• De participer, en relation avec les secteurs concernés, à la mise en œuvre de la politique nationale en matière de développement durable, de protection de l'environnement et de préservation de la santé publique ;
• De proposer les normes, règlements et conditions d'épuration et de rejet des eaux usées ;
• De veiller au fonctionnement normal des réseaux et des infrastructures d'assainissement ;
• D'initier et de mener toute réflexion et étude sur la conduite et la mise en œuvre de la réforme du service public d'assainissement.

La DHA est en charge des questions liées à l'hydraulique agricole et plus particulièrement avec comme mission :
• De déterminer, en relation avec les structures concernées, la politique hydro-agricole en matière d'irrigation et de drainage ;
• De participer, avec les structures concernées, à l'élaboration des plans de développement et des schémas rationnels et régionaux en matière d'irrigation et de drainage ;
• D'élaborer, d'évaluer et mettre en œuvre la politique en matière de production et de stockage de l'eau destinée aux usages agricoles et couverte par des opérations de petite et moyenne hydraulique (puits, forages et retenues collinaires) ;
• De suivre et de contrôler les programmes d'études et de réalisation des infrastructures d'irrigation et de drainage ;
• D'élaborer et de suivre la réglementation technique en matière d'étude, de réalisation et d'exploitation des ouvrages d'hydraulique agricole ;
• De fixer les normes d'exploitation et d'entretien des réseaux et ouvrages destinés à l'irrigation et au drainage ;
• D'orienter, d'animer et de contrôler l'activité et le développement des organismes relevant du ministère chargé de l'activité hydraulique agricole ;
• De veiller au fonctionnement normal des réseaux et des infrastructures d'irrigation et de drainage ;
• D'initier et de mener toute réflexion et étude sur la conduite et la mise en œuvre de la réforme du service public de l'irrigation et du drainage.

La DPAE s'occupe particulièrement des aspects de planification avec, dans le détail, les missions :
• D'élaborer les études générales relatives à sa mission, de participer aux études et schémas sectoriels en s'assurant de la prise en charge de l'aspect économique,
• D'élaborer et de coordonner les travaux de planification des investissements,
• D'élaborer la synthèse des propositions de programmes émanant des organismes sous tutelle,
• De mobiliser les financements internes et externes nécessaires à la réalisation des programmes,
• D'assurer le suivi de la réalisation des programmes,
• D'élaborer les bilans périodiques,
• D'assurer la liaison avec les services concernés chargés des finances et de la planification.

Enfin la DEAH (Etude et planification) est chargée explicitement
• De veiller et de mettre à jour l'inventaire et l'évaluation des ressources en eau et des superficies irriguées ;
• D'élaborer, sur la base des données relatives aux ressources et aux besoins des utilisateurs, les schémas d'aménagement hydraulique aux plans national et régional.
• De suivre et de contrôler des études au niveau des services déconcentrés du secteur.
Outre les directions du Ministère, nous retrouvons l’ANRH (Agence Nationale des Ressources Hydrauliques), EPA sous tutelle du ministère dont les principales missions sont la prospection et l'évaluation des ressources en eau et en sol du pays; La collecte, le traitement et la mise à jour des informations relatives aux ressources en eau et en sol; Le suivi de la ressource au plan quantitatif et qualitatif; La préservation, la protection et la sauvegarde de la ressource contre toute forme de dégradation. L’ANRH a une vocation scientifique et technique en matière de Ressources hydrauliques. C’est donc au sein de l’ANRH que se trouve concentré l’ensemble des missions de monitoring de la ressource en eau, d’étude expertes sur les bilans en eau et de cartographie de références sur les ressources en eau dans leur dimension naturelle. L’ANBT (Agence Nationale des Barrages et Transfert) est également un EPA sous tutelle du ministère avec une orientation explicitement technique. L’ANBT est en charge de promouvoir les études techniques et technologiques; d’assurer la conduite de la réalisation des programmes d’investissements planifiés; de veiller à la préservation et à la protection des grands barrages en exploitation; d’apporter son concours aux organismes concernés.

L’ONA a le statut d’EPIC et a pour mission d’assurer sur tout le territoire national, la protection de l’environnement hydrique et la mise en œuvre de la politique nationale d’assainissement en concertation avec les collectivités locales. Dans le détail, et manière non exhaustive, l’ONA est en charge de la maîtrise d’œuvre et d’ouvrage ainsi que l’exploitation des infrastructures d’assainissement qui relèvent de son domaine de compétence; de prendre en charge les installations d’évacuation des eaux pluviales dans ses zones d’intervention pour le compte des collectivités locales. D’un point de vue opérationnel, l’ONA est en charge de créer toute organisation ou structure se rapportant à son objet, en tout endroit du territoire national; de gérer les abonnés au service public d’assainissement; d’établir le cadastre des infrastructures d’assainissement et en assurer sa mise à jour; d’élaborer les schémas directeurs de développement des infrastructures d’assainissement relevant de son domaine d’activité; de réaliser directement toutes les...
études techniques, technologiques, économiques en rapport avec son objet. **L’ONID (Office national de l’Irrigation et drainage)** est un EPIC ayant pour principale mission la gestion, l’exploitation et la maintenance des équipements et infrastructures hydrauliques dans les périmètres d’irrigation y compris les ouvrages de transfert d’eau destinés à l’irrigation que l’État et/ou les collectivités territoriales lui concèdent. Dans les périmètres d’irrigation relevant de sa compétence, **il est chargé notamment de la commercialisation de l’eau agricole** ; de la conduite des irrigations ; de la gestion, l’exploitation et l’entretien des réseaux d’irrigation et réseaux connexes ; d’apporter assistance et conseils aux usagers de l’eau agricole. **Il peut, en outre, être chargé par l’État et/ou les collectivités territoriales de la mobilisation des ressources en eau agricole au niveau des forages, puits, prises d’oueds, retenues collinaires et ouvrages de captage divers destinés à l’irrigation des terres agricoles.** L’État et/ou les collectivités territoriales, maîtres d’ouvrages, peuvent confier à l’ONID la qualité de maître d’ouvrage délégué, afin de mener en son nom et pour son compte les opérations concourant à la réalisation des infrastructures et équipements destinés à l’irrigation et l’assainissement/drainage des terres agricoles et aux ouvrages de transfert. Enfin **l’ADE (Algérienne des Eaux)** est également un EPIC ayant pour principale mission d’**assurer sur tout le territoire national, la mise en œuvre de la politique nationale de l’eau potable à travers la prise en charge des activités de gestion des opérations de production, de transport, de traitement, de stockage, d’adduction, de distribution et d’approvisionnement en eau potable et eaux industrielles** ainsi que le renouvellement et le développement des infrastructures s’y rapportant.

### 3.2.2. Les Agences de bassin hydraulique (ABH) et l’Agence Nationale de Gestion Intégrée des Ressources en Eau (AGIRE)

L’Algérie a mis en place des Agences de bassins hydrographiques (5 au total sur le territoire national) depuis 1996. Les ABH sont des établissements publics sous tutelle du MRE et sont en charge :

- **De gérer le système d’information à l’échelle des bassins hydrographiques à travers l’établissement et l’actualisation des bases de données et des outils d’information géographique ;**

- De contribuer à l’élaboration, à l’évaluation et à l’actualisation des plans à moyen et long terme de développement sectoriel à l’échelle des bassins hydrographiques ;

- De collecter les redevances instituées par la législation et la réglementation en vigueur.

En 2011, et opérationnelle depuis 2014, a été créée **l’agence nationale de gestion intégrée des ressources en eau, l’« AGIRE »**. L’AGIRE est également un EPIC qui jouit également d’une autonomie financière.

Dans le cadre de la politique nationale de développement, l’agence nationale est chargée de réaliser, au niveau national, toutes actions concourant à une gestion intégrée des ressources en eau. Les principales missions de l’AGIRE sont :

- De réaliser toutes enquêtes, études et recherches liées au développement de la gestion intégrée des ressources en eau ;

- **De développer et coordonner le système de gestion intégrée de l’information sur l’eau à l’échelle nationale ;**

- De contribuer à l’élaboration, à l’évaluation et à l’actualisation des plans à moyen et long terme de développement sectoriel à l’échelle nationale ;

- De contribuer à la gestion des actions d’incitation à l’économie de l’eau et à la préservation de la qualité des ressources en eau.
Pour accomplir ses missions, l’AGIRE est habilitée à conclure tout contrat ou convention lié à son objet ; à effectuer toutes opérations commerciales, financières, industrielles, mobilières et immobilières liées à son objet et de nature à favoriser son développement ; à acquérir, exploiter ou déposer toute licence, modèle ou procédé technique se rapportant à son objet ; contracter tout emprunt ; à prendre des participations dans tout groupement ou société ; à développer des relations professionnelles et de partenariat avec des organismes similaires nationaux ou étrangers ; à organiser et/ou participer aux conférences, réunions scientifiques et colloques nationaux et internationaux ainsi qu’aux réseaux d’échanges d’informations et d’expériences se rapportant à son domaine d’activité.

3.2.3. **Autres institutions ou ministères**


3.3. **Analyse des Systèmes d’information**

Pour mémoire, un système d’information constitue bien l’ensemble de moyens techniques, humains et matériels mis à disposition pour collecter, stocker, contrôler, valider et diffuser une information. Par extension, parmi les Systèmes d’information inventoriés, certains possèdent un niveau de maturité plus avancé que d’autres notamment au regard du degré d’intégration du SI dans une sphère numérique et de base de données.
16 SI au total ont été inventoriés au niveau de l’Algérie. L’inventaire réalisé ne se veut pas exhaustif dans le sens où tous les directions ou organismes n’ont pu être rencontrés (notamment les ABH). La maturité au sens large des SI inventoriés en Algérie reste assez variée, néanmoins, il semble que les données bénéficient majoritairement de stockage « numérique » de la donnée. 95 % des SI inventoriés sont jugés fonctionnels et offrent la possibilité de stocker de l’information. 1 seul SI semble en cours de réalisation, le SGIAAR (Système de Gestion Intégré de l’Information Agricole et Rurale). Notons que dans notre inventaire également, les SI des ABH (SIR & PDARE) sont considérés comme 1 seul Système dans notre analyse. Il est entendu que le niveau de maturité et leur caractère « fonctionnel » ne sont pas nécessairement les mêmes au niveau de chaque ABH. Enfin les outils de bases de données disponibles au sein des secteurs ANRH (Piezo 2000 notamment) ne font pas partie de l’inventaire.

Mise à part le SGIAAR (dont le caractère « non fonctionnel » devrait être précisé) l’ensemble des SI identifiés sont donc en situation théorique de centralisation de données ou d’information sur une ou des thématiques spécifiques. On recense 59 % des SI (10) qui sont dédiés à une thématique unique et peuvent donc se rapprocher d’une « Banque de données de référence » à l’échelle nationale (Système de synthèse Mono thématique), 35 % (6) des SI qui sont une agrégation de plusieurs sources de données sur plusieurs thématiques (méta système) et 6% (1) qui est en réalité considéré comme un système local ne couvrant pas soit l’ensemble du périmètre géographique national soit l’ensemble d’une thématique spécifique. Il s’agit justement de l’application « Piezo 2000 » qui sert de base centrale pour les données piézométriques au niveau des secteurs ANRH. Toujours pour l’ANRH, il est à noter que les applications centralisées à l’échelle nationale, ont un réplica au niveau des régions ANRH.

On identifie beaucoup de méta-systèmes au niveau de l’Algérie. Parmi les « méta-systèmes » on retrouve notamment le SI SNDA (Schéma National de l’Assainissement), la Base du PNE (Plan National de l’Eau), les bases SIR (Systèmes d’Information Régionaux distribués dans chaque ABH) et le SI ou Base PDARE (également distribué dans chaque ABH). La particularité de ces « méta-systèmes » est qu’ils ont été bâti à partir de projets spécifiques et visaient plus une agrégation globale d’informations existantes qu’il convient de mettre à jour par la suite avec une diversité de données source, qu’un véritable SI ou application dédiée à la gestion d’une donnée spécifique.
Un focus sur les 10 SI « de synthèse mono-thématique » fonctionnels ayant vocation à avoir le statut de « banque de données nationale » montre que ces SI traitent majoritairement de la Ressource en eau (80 % soit 8 SI), contre seulement 20 % (2) des SI traitant des Usages de l’eau. Rappelons ici que l’Office National des Statistique n’est pas inclus dans ce périmètre faute d’information sur leur SI. Il est également important de souligner que beaucoup d’informations et/ou données de référence sur les usages sont inclus dans le périmètre des « métasystèmes ». Les SI « de synthèse mono-thématique » sont, pour une grande partie, portés par les SI de l’ANRH.

3.3.2. **Les Systèmes d’information « mono-thématique » sur la ressource en eau**

![Figure 23 : catégories thématiques des SI en Algérie](image)

| Mesures de débit des cours d’eau |
| Mesures piézométriques des eaux souterraines |
| Mesures de qualité des eaux (Surface & Souterrain) |
| Mesures de climatologie / pluviométrie |
| Mesures sur les ouvrages de stockage et de distribution |

3.3.2.1. **Synthèse sur les SI nationaux**

Ce que nous appelons « système de synthèse mono-thématique », comme énoncé plus haut, représente les SI qui ont vocation à être identifiés comme des « banques de données » de référence au niveau national au moins car ces SI se concentrent sur un type de données sur une (parfois des) thématique(s). Parmi ces SI figure en première place l’ensemble des banques de données disponibles et administrées au sein de l’ANRH à savoir BAdGES, BASHYD, SIQUEAU et SYRSA qui couvrent respectivement le monitoring des eaux souterraines, le monitoring des eaux de surface, le suivi de la qualité des eaux, le suivi des ressources en sol et de l’information climatologique. Nous retiendrons également que des données issues de capteurs en temps réel semble être disponibles ponctuellement soit au niveau de l’ANRH soit au niveau des régions ANRH. A priori ces données ne sont pas remontées dans les systèmes centraux et les expériences de téléméasures restent très ponctuelles (Mitidja, Oranie…). Nous ne possédons pas d’information complémentaire sur ces instrumentations ni sur les éventuels SI gérant ces données. D’un point de vue global, nous retiendrons que l’ANRH est responsable de la publication de cartographie de référence en matière d’hydrogéologie, de sol, d’érosion etc… Nous retiendrons que des initiatives ont été engagées au niveau national de l’ANRH pour s’engager vers un SIG fédérateur sur les ressources en eau qui restructurerait l’aspect fonctionnel des SI tels qu’ils fonctionnent aujourd’hui. Complètement sous ACCESS, les moyens de stockage de l’information des bases de données ANRH portent donc sur des solutions essentiellement
bureautiques qui, même si elles offrent l’avantage de la souplesse, ne peuvent pas, à terme, couvrir le rôle attendu pour la gestion, l’administration et la diffusion de telles sources d’information. Toujours dans ce périmètre, nous identifions les bases de données et SI de l’ONM comme une source majeure de l’information météorologique en complément des informations stockées dans les SI de l’ANRH. Il existe également une base de données pour la petite et moyenne hydraulique (PMH) disponible au sein de la DHA du Ministère. Cette base de données est à priori un SIG de référence accessible via un portail web. Cette base de données a été constituée à partir d’un projet dédié au niveau de l’ANRH. Enfin l’ANBT a développé un SI full web (soudoud-dzair.com) lui permettant de stocker, manager et diffuser les informations quotidiennes liées à la gestion des barrages. Outre des informations relatives au niveau des barrages et à la qualité des eaux de barrages, l’ANBT gère les informations sur les barrages (dimension, localisation, caractéristiques techniques…) à travers son système. Les informations relatives aux transferts d’eau semblent n’être que partielles pour le moment.

3.3.2.2. Les SI périphériques

Les institutions rencontrées et la documentation collectée n’ont pas permis d’identifier d’autres SI qui seraient périphériques aux données sur les ressources en eau. Notamment, aucune information n’a pu être collectée concernant le volet spécifique des eaux littorales ou encore le volet spécifique lié aux forêts ou inventaires forestiers.

3.3.2.3. Aspects spécifiques liés à la qualité des eaux et des sols

Les informations concernant les laboratoires et les SI associés n’ont pas pu être collectées. Nous retiendrons que la base de données SIQUEAU et la base de données SYRSA sont en situation de stocker l’information sur la qualité des eaux. L’ANRH possède ses propres laboratoires d’analyse (7 répartis sur l’ensemble du territoire) qui produisent les résultats d’analyses physico-chimiques. Les résultats sont saisis dans une application ACCESS qui est un réplica de SIQUEAU. Il est à noter que l’ANBT et l’ANRH collaborent fréquemment, y compris sur le volet « Prélèvements / analyses » pour la physico-chimie.

3.3.2.4. Les SI décentralisés ou déconcentrés

Il existe 7 directions régionales ANRH et 34 secteurs sous ces 7 régions. Au moins au niveau des eaux souterraines et de la qualité des eaux, les directions régionales possèdent un réplica des bases de données centrales (BADGES et BASHYD) qui ne couvre que le périmètre qui les concerne. Ces applications fonctionnent sous ACCESS, comme au niveau central. Au niveau local des 34 secteurs ANRH, il existe une base de données avec application associée sous ACCESS (PIEZO 2000) qui permet le stockage de l’information acquise localement par les secteurs ANRH. En parallèle de ces SI, il existe un autre SI au niveau de l’ANRH, le SI SAGESSE qui est en réalité une base de données spécifiquement construite pour l’étude hydrogéologique du Système Aquifère du Sahara Septentrional. Cette base de données est mise à jour régulièrement en collaboration avec l’OSS.
3.3.2.5. Tableau des SI recensés (hors SI laboratoire)

Tableau 3 : Synthèse des SI mono-thématique sur la ressource en eau en Algérie

<table>
<thead>
<tr>
<th>Nom du SI</th>
<th>Catégories thématiques</th>
<th>Données associées</th>
<th>Etat du SI</th>
<th>Organisme responsable du SI</th>
<th>Type de base de données</th>
<th>Positionnement global</th>
<th>Périmètre géographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASHYD</td>
<td>Eaux superficielles, Climatologie</td>
<td>Hydrométrie, Climatologie, Courbes, Hauteur / débit...</td>
<td>Fonctionnel</td>
<td>ANRH</td>
<td>ACCESS</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>BADGES</td>
<td>Eaux souterraines</td>
<td>Niveaux, Données sur les ouvrages (forages, puits, tests de pompage...)</td>
<td>Fonctionnel</td>
<td>ANRH</td>
<td>ACCESS</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SIQUEAU</td>
<td>Eaux superficielles, Eaux souterraines, Ouvrages de stockages</td>
<td>Qualité des eaux</td>
<td>Fonctionnel</td>
<td>ANRH</td>
<td>ACCESS</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SAGESSE</td>
<td>Eaux souterraines</td>
<td>Niveaux, Données sur les ouvrages (forages, puits, tests de pompage...)</td>
<td>Fonctionnel</td>
<td>ANRH</td>
<td>ACCESS</td>
<td>Ressource</td>
<td>Régional</td>
</tr>
<tr>
<td>SI ONM</td>
<td>Climatologie</td>
<td>Climatologie, P, ETP, Température, vent...</td>
<td>Fonctionnel</td>
<td>ONM</td>
<td>SGBD Pro</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SOUDoud DZAIR</td>
<td>Eaux stockées</td>
<td>Niveau, bilan hydrologique, qualité des eaux</td>
<td>Fonctionnel</td>
<td>ANBT</td>
<td>SQL Server</td>
<td>Ressource</td>
<td>National</td>
</tr>
<tr>
<td>SI PMH</td>
<td>Eaux stockées</td>
<td>Inventaire de la petite et moyenne hydraulique</td>
<td>Fonctionnel</td>
<td>MRE / DHA</td>
<td>GEODATABASE</td>
<td>Ressource</td>
<td>National</td>
</tr>
</tbody>
</table>

3.3.3. Systèmes d’information sur les usages de l’eau et les forces motrices

Sur le périmètre des données AEP, Assainissement et irrigation, 3 principaux SI sont identifiés dont 2 semblent en cours de réalisation (ONID et ADE). Le SIG de l’ONA est quant à lui fonctionnel et a été financé dans le cadre du programme Eau II. Peu d’informations ont pu être collectées sur ces SI. Notons simplement que dans le périmètre des SI assainissement, le SI du SNDA (identifié comme méta-système) traite également du volet assainissement. D’un point de vue global, le volet assainissement reste donc assez bien couvert. Le SI de l’ONA est en réalité un SIG métier National qui vise la centralisation des ouvrages et réseaux d’assainissement. Ces ouvrages sont environnés de données à caractère « projet » sur l’assainissement. Ces informations quant aux dimensionnement et capacités sont disponibles et constituent donc une banque nationale sur les infrastructures assainissement conséquente. Les SI de l’ADE et de l’ONID semblent être cours de développement actuellement. L’ADE semble orienter son SI vers une plateforme SIG à la manière de l’ONA, en recensant exclusivement le volet infrastructure à l’échelle nationale dans 1 premier temps. Il est fort probable que des SI locaux existent au niveau des Stations de traitement et de distribution,
notamment pour des visées de gestion de la distribution d’eau au sens large à l’échelle d’un site de production. Ces SI locaux n’ont pas pu faire l’objet d’une analyse. Quoi qu’il en soit, ce SI de dimension nationale semble revêtir un caractère exclusivement « bureautique » pour le moment en s’appuyant sur des noyaux SIG divers. Le SI de l’ONID (SIGAAR) vise une centralisation d’information plus large et a donc été positionné dans le volet des « méta-systèmes de synthèse ».

Définition du périmètre fonctionnel

Figure 25 périmètre fonctionnel du SIG de l’ONA

3.3.4. Les méta-systèmes de synthèse

Par méta-système de synthèse nous entendons les SI qui visent une agrégation de sources de données différentes et/ou multi acteurs. Typiquement les observatoires sont considérés comme des méta-systèmes de même que les SI visant la valorisation d’informations.

6 (+1) grands méta-systèmes sont identifiés dans notre recensement au niveau de l’Algérie. Le principal SI identifié est la base du PNE qui est étroitement imbriquée avec les SI PDARE & SIR au niveau des ABH. La Base du PNE (et les bases corolaires au niveau des ABH) ont clairement pour vocation de centraliser les données et information sur les ressources en eau et sur les usages de l’eau au niveau de l’Algérie par le biais des ABH. La Base du PNE, si elle concentre des données plus ou moins brutes, concentre également des indicateurs nécessaires à la Gestion Intégrée des Ressources en Eau et à la Planification de l’eau au sens large. Le PNE n’a pas été actualisé. L’état de « maintenance » des bases SIR et PDARE semble ne pas être optimal et le PNE qui en découle n’est actuellement pas mis à jour. Rappelons ici que le PDARE désigne un « Plan Directeur d’Aménagement des Ressources en Eau » qui représente plus un document de planification au départ mais pour lequel une base de données spécifique a été créée. Quoi qu’il en soit, le SIR et le PDARE évoluent de manière parallèle au sein des ABH. Le PDARE contient des données du SIR.

Le SI de l’ONID n’a pas pu être étudié dans le cadre de nos missions. Par conséquent, aucune information sur l’état de maturité du système et son périmètre exact n’a pu être compilé. Néanmoins, il semble que ce système vise à concentrer les informations statistiques relatives à l’agriculture au sens large (infrastructures, capacités de traitement, capacité nominale, coût d’exploitation etc...) mais également sur les milieux récepteurs (oueds, rivières...) et les ressources en eau. L’ensemble de ces informations ont été compilées au sein d’un système robuste. L’architecture fonctionnelle a été établie pour garantir sa mise à jour dans le futur (ensemble des composants techniques permettant les échanges et la mise à jour) mais aucun schéma « organisationnel » pour sa maintenabilité n’a été envisagé à ce stade (Qui est en charge de quoi et à quelle fréquence dans le processus de mise à jour).

Le SI du SNDA a été délivré récemment dans le cadre du projet du même nom et financé dans le cadre du programme EAU II. Ce SI a rassemblé un nombre conséquent d’informations sur l’assainissement au sens large (infrastructures, capacités de traitement, capacité nominale, coût d’exploitation etc...) mais également sur les milieux récepteurs (oueds, rivières...) et les ressources en eau. L’ensemble de ces informations ont été compilées au sein d’un système robuste. L’architecture fonctionnelle a été établie pour garantir sa mise à jour dans le futur (ensemble des composants techniques permettant les échanges et la mise à jour) mais aucun schéma « organisationnel » pour sa maintenabilité n’a été envisagé à ce stade (Qui est en charge de quoi et à quelle fréquence dans le processus de mise à jour).
**SIGMA semble être le SIG national sur les ressources en eau.** Il vise à concentrer l’ensemble des informations sur l’eau au niveau national mais ne contient actuellement que les données au niveau de l’Algérois. A terme, le SIG devrait s’interfacer avec les bases de l’ANRH et du PNE.

Le SIP, Système d’Information sur la Planification, n’a pas été étudié directement. Ce SI est néanmoins orienté sur la gestion des projets d’investissement sur l’eau et ne traite donc pas directement des thématiques sur les usages de l’eau ou la ressource en eau.


**Tableau 4 : synthèse des méta-systèmes de synthèse en Algérie**

<table>
<thead>
<tr>
<th>Méta Système</th>
<th>Etat du SI</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI ONID</td>
<td>En cours de réalisation</td>
<td>Le SI de l’ONID « le SGIAAR » ou Système de Gestion Intégré de l’Information Agricole et Rurale devrait concentrer et consolider les informations relatives à l’agriculture (surface agricole, demande en eau, irrigation...)</td>
</tr>
<tr>
<td>SIGMA</td>
<td>Fonctionnel</td>
<td>SIG est un méta-système local qui est une initiation du SIG sur les ressources en eau. Les informations contenues dans ce système semblent être limités au secteur de l’Algérois</td>
</tr>
<tr>
<td>SI du SNDA</td>
<td>Fonctionnel</td>
<td>Le SI du SNDA (Schéma National de l’Assainissement) concentre un pool d’informations sur les rejets et les référentiels associés. Ce SI a été développé spécifiquement pour le projet et est dimensionné pour être mis à jour du point de vue des informations de base sur l’assainissement (lieux, capacités de traitement, population raccordée, points de rejet associés...)</td>
</tr>
<tr>
<td>Bases SIR</td>
<td>Fonctionnel</td>
<td>Les bases SIR (Systèmes d’information Régionaux) sont des SI de synthèse qui ont été conçus spécifiquement pour centraliser les informations sur l’eau et les usages au niveau des ABH. Il existe donc 5 instances de base SIR (1 par ABH)</td>
</tr>
<tr>
<td>Bases PDARE</td>
<td>Fonctionnel</td>
<td>Les Bases PDARE sont également des bases qui sont consolidées au niveau des ABH pour centraliser les données sur l’eau. Elles s’appuient sur les bases SIR en partie et sont complétées au fil de l’eau. Il existe donc 5 instances de base PDARE (1 par ABH)</td>
</tr>
<tr>
<td>Base PNE</td>
<td>Fonctionnel</td>
<td>La BASE du PNE est un méta-système présent au niveau du ministère et qui agrège l’ensemble des informations sur l’eau à l’échelle nationale. La Base du PNE s’appuie sur les bases PDARE des ABH.</td>
</tr>
<tr>
<td>SIP</td>
<td>Fonctionnel</td>
<td>Système d’information pour la Planification plutôt orienté sur la gestion des projets d’investissement et à même de garantir le suivi des projets (programmes, marchés, crédits de paiement et AP)</td>
</tr>
<tr>
<td>SI INCT</td>
<td>Fonctionnel</td>
<td>Système de centralisation de l’information géographique de référence à l’échelle de l’Algérie.</td>
</tr>
</tbody>
</table>

**3.4. Processus de collecte, de centralisation, de validation & de contrôle**

Par processus de collecte nous entendons décrire l’ensemble de la chaîne de production de la donnée à son niveau le plus bas (collecte sur site) jusqu’à son entrée dans la base de données.
3.4.1. **Dans les Si mono-thématiques**

3.4.1.1. Mode d’acquisition

On distinguerà 4 grands modes d’acquisition de l’information que sont :

<table>
<thead>
<tr>
<th>Mode d’acquisition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enquête spécifique et Imagerie satellite</td>
<td>Essentiellement pour les données avec des fréquences de mise à jour annuelle voire pluri-annuelle</td>
</tr>
<tr>
<td>Capteur et télétransmission uniquement</td>
<td>Pour des données temps réel</td>
</tr>
<tr>
<td>Saisie manuelle + Capteurs de télétransmission</td>
<td>Lorsqu’il y a un panachage entre les données remontées en temps réel et des processus plus manuels</td>
</tr>
<tr>
<td>Saisie manuelle sur papier uniquement</td>
<td>Lorsque que le mode de collecte est essentiellement manuel</td>
</tr>
</tbody>
</table>

L’étude sur 8 SI Mono-thématique nationaux (hors ONA & ADE) montre que dans 100 % des cas les données sont acquises (en totalité ou en partie) par des processus manuels sans réel accompagnement par des outils de saisie simplifiée (tablette, ordinateur portable etc...). Néanmoins dans 63 % des cas le processus de collecte repose sur des relevés entièrement manuels (essentiellement pour l’ANRH). Dans 12 % des cas (1 SI - BD SYRSA) la mise à jour est assurée par le biais d’études spécifiques. Il n’y a pas de notion de « réseau de suivi » constant pour la mise à jour de cette BD. Les acquisitions par capteur de télémesures ont été mentionnées lors d’entretiens mais aucune base de données centralisant ces informations n’a été identifiée. Ce mode de collecte semble encore marginal dans le domaine du monitoring des ressources en eau. Enfin 25 % des cas (2 SI) font appel à des modes d’acquisition sur la base d’imagerie satellites ou de réseaux spécifiques (ONM et BD PMH). Néanmoins pour la BD PMH, elle a été établie elle aussi dans le cadre d’un projet spécifique.

3.4.1.2. Les modes de centralisation de l’information

**La majeure partie des échanges de données se fait actuellement par le biais d’envoi des résultats soit par voie postale (papier / CdRom), soit par email** notamment au niveau de l’ANRH. Malgré un envoi des bases de données décentralisées au niveau du central, les données sont également acheminées par papier et consolidées par ressaisie manuelle dans la base centrale. Dans tous les cas, sur ce qui nous a été donné de voir sur les SI principaux de l’ANRH, il n’y a pas de processus « démérialisé » de saisie, d’échange et d’intégration, dans le sens où aucun « canevas » ou « format pivot » de fichier n’est mis en place pour faciliter les échanges entre les différents niveaux.

**Au niveau de l’ANBT, il existe un double mode d’acheminement de l’information** car les informations sont saisies de manière décentralisée directement sous l’application mise en place. Les envois papier subsistent néanmoins et un agent de contrôle vérifie les données saisies au sein du SI. Dans ce cas la circulation de l’information papier sert essentiellement dans une dimension de « contrôle ».

Dans le cas de l’ONA, **les instances de bases de données sont répliquées au niveau central de manière synchrone.**
Aucune information précise sur le mode de centralisation des données au sein de l’ONM n’a pu être récoltée. Néanmoins, l’ONM, de par ses missions, semble avoir un mode de centralisation robuste. Enfin aucune information n’a pu être collectée sur les modalités de mise à jour de la base PMH.

3.4.1.3. Validation & contrôle

Dans l’analyse que nous avons pu faire et sur ce qui nous a été donné de voir, *la grande majorité des SI ne possède pas système de contrôle / validation de la donnée lors de son stockage (contrôle automatique).* Nous retiendrons qu’un contrôle est opéré au niveau de l’application de l’ANBT par vérification croisée entre la saisie et les remontées papier et que *des contrôles de bornes sont implémentés dans la base SIQUEAU.* De manière générale, les contrôles sont réalisés sur la base d’un « dire d’expert » et des connaissances des agents.

3.4.2. Dans les SI « méta-système de synthèse »


En ce qui concerne *les SI présents au niveau des ABH (SIR & PDARE),* les acquisitions de données de base semblent être effectuées également *par enquête spécifique.* Il n’existe pas de processus d’échange formalisé des données entre les Directions de Wilaya et les ABH. *Quelques ABH proposent néanmoins des trames de consolidation de l’information* pour permettre une intégration facilitée dans la base de données SIR (exemple de l’ABH Sahara, extrait du site internet [http://www.abhs.dz/canevas-informations/](http://www.abhs.dz/canevas-informations/)). Il n’y a pas d’information sur la « généralisation » de cet exercice au niveau des autres ABH. Quoi qu’il en soit, les ABH restent « maitresses » de leur processus d’acquisition et de mise à jour au niveau de leur SI.

*Canevas d’informations pour la base SIR*

![Figure 27 : Espace de téléchargement des "canevas" d’information pour la mise à jour de la base SIR de l’ABH Sahara](image)

3.5. Focus sur des flux d’information

3.5.1. Flux d’informations au sein de l’ANRH sur les bases « Ressources en eau » (hors SYRSA)

*Les secteurs ANRH sont au cœur du processus de d’acquisition (collecte) de la donnée de base. Au niveau des eaux souterraines, les données collectées sont consolidées dans un applicatif ACCESS (Piezo 2000) à leur niveau.* Il est vraisemblable que des outils similaires existent pour les données hydrologiques et climatiques. Néanmoins, ces applications, si elles existent, ne sont pas connues à ce stade. *Les données ainsi acquises sont transmises au niveau régional de l’ANRH (7 directions régionales) par transmission sous format Excel et/ou format papier* suite à des acquisitions de terrain. *Les données remontées sont saisies manuellement dans les bases régionales* qui sont des instances spécifiques des SI centraux (BADGES, BASHYD...).
Pour la données « Physico-chimie », si les prélèvements sont réalisés, ici aussi, par le niveau des secteurs ANRH, les échantillons sont transmis vers les laboratoires ANRH qui existent (parfois régionaux, parfois national). Au niveau régional, malgré des outils similaires disponibles (BADGES et BASHYD), les informations sont transmises sous format Excel au niveau national. Les données sont ainsi ressaisies dans l’application centrale par les responsables « métier » de l’ANRH au niveau central. Pour la physico-chimie les données sont transmises du laboratoire vers les gestionnaires de la base SIQUEAU. Les données « qualité des eaux » sont également ressaisies manuellement dans la base centrale. L’architecture des applications de l’ANRH s’appuie entièrement sous ACCESS qui est un logiciel de SGBD essentiellement à dimension « bureaucrate » ou « restreinte ». Il a été fait mention de la mise en place d’un réseau de suivi en temps réel pour certains points de suivi spécifique mais qui n’est actuellement pas rééllement fonctionnel et qui ne rentre pas dans le périmètre des bases de données de l’ANRH. Enfin, il semble que des initiatives visant la mise en place de réseaux de suivi automatisé aient été engagées au niveau de certaines ABH. Ces SI, suivant leur degré de mise en œuvre, semblent donc déconnectés des SI de référence de l’ANRH.

![Diagramme des flux d'information autour de l'ANRH](image)

Figure 28 : schéma des flux d’information autour de l’ANRH

3.5.2. **Flux d’information sur les barrages (ANBT)**

Au niveau de l’ANBT les relevés sont effectués quotidiennement au niveau de chaque barrage par les équipes dédiées sur le barrage. Les données sont saisies dans EXCEL et sont transmises au niveau des 3 unités régionales. Au niveau des unités régionales, l’ensemble des informations remontées par les barrages sont consolidées. Un accès est ouvert sur le portail Soudoud Djazair hébergé au niveau de l’ANBT. Les informations sont saisies directement par les agents de l’unité régionale sur le portail qui alimente directement la base de données. Parallèlement à ce processus, les résultats bruts (Excel) sont également transmis par email vers le niveau central de l’ANBT et à direction d’une équipe d’administrateurs des données de la base de données Soudoud Djazair. Ces administrateurs de données ont des profils « métier » (statisticien, ingénieur hydraulique) et vérifient quotidiennement que les données saisies par les agents
**Etat des lieux des systèmes d’information dans le secteur de l’eau au Maghreb**

dans la base de données sont conformes aux résultats remontés par dans le fichier Excel. Ce double processus garantit que l’information stockée dans la base de données est « valide ».

Figure 29 : Schéma des flux d’information au niveau de l’ANBT (application Soudoud Djazair)

3.5.3. **Flux d’informations envisagées pour la mise à jour du SNDA**

La mise à jour du SNDA s’appuie essentiellement sur le rôle centralisateur des Wilayas et les services d’assainissement de leurs directions de l’eau. Il existe 48 wilayas en Algérie. Les DREW sont donc à l’interface pour piloter et centraliser les informations issues des services locaux de l’ONA et des APC (Assemblées Populaires Communales). Les questionnaires spécifiques sont rendus disponibles par la DAPE pour chaque wilaya. Ces questionnaires sont en réalité des « trames standards » Excel de saisie de l’information ou « canevas » qui sont compatibles avec le système central du SNDA qui est en capacité d’intégrer automatiquement les données associées à ces canevas. Une intégration automatique des fichiers est réalisée à travers l’application. Les données sont contrôlées au niveau du processus d’import (contrôle automatique du fichier au moment du chargement dans la base de données) avec des contrôles de bornes correspondant à des tests d’impossibilités (si la valeur contrôlée est au-delà ou en deçà de la borne, la donnée est rejetée et n’est pas importée dans la base). En parallèle, il est nécessaire de maintenir les données du SNDA avec les informations issues d’autres partenaires à dimension nationale. Aucun import automatique ou trame de collecte n’est prévu pour les échanges avec ces partenaires. Leur mise à jour est par ailleurs beaucoup plus « ponctuelle » alors que les données au cœur du SNDA visent une mise à jour annuelle de la base de données.
Figure 30 : Schéma de flux envisagé pour la mise à jour du SNDA

3.6. Architecture et infrastructure des SIEAU

3.6.1. **Le Système de centralisation de l’information**

*Les technologies utilisées pour stocker les informations sont variables en fonction des SI identifiés.* Nous retiendrons que les SI de l’ANRH sont actuellement tous sous ACCESS, SGBD essentiellement orienté vers la bureautique et non adapté au stockage et à l’administration de banques de données nationales comme peuvent être considérées les bases ANRH. Les services informatiques de l’ANRH gèrent l’ensemble des bases de données de l’ANRH et des partenariats sont engagés avec la DISI du MRE.

La plupart des autres SI existant ont été réalisés sur la base de projets spécifiques et sont donc plus ou moins dépendants des choix faits durant le projet lui-même. Sur les SGBD professionnels, le choix de SQL Server comme système de stockage semble être néanmoins majoritaire. Ce choix est aussi celui pris par la DISI du MRE qui met en avant ce système dans son schéma directeur informatique.

*Les bases de données nationales (PNE, SNDA, SIG MRE, PMH, SIP) sont donc hébergées au sein de la DISI du MRE.* La DISI a par ailleurs complètement développé un schéma d’architecture pour un système intranet en direction du secteur de l’eau. Un data center est opérationnel et vise à mettre en lien l’ensemble des administrations et partenaires institutionnels du secteur de l’eau pour permettre le partage d’information. Son rôle est d’importance dans la diffusion, l’accès, le maintien et la stabilité des applications en service courant car la DISI se positionne au cœur des échanges « techniques ». Dans ce data center, l’écosystème technique repose donc sur un SGBD de type SQL Server, un SIG ESRI avec ArcGIS Server et des environnements de développement « full web ». Si cette infrastructure est en place, les flux d’informations et d’échanges entre les différents partenaires et bases de données sont encore problématiques. Les SI...
Les ABH disposent également d’un accès intranet vers le data center de la DISI. Il est à noter que pour des raisons d’accès à la fibre, l’AGIRE n’a actuellement pas accès à cet intranet.

Figure 31 : schéma d’organisation et circuits de l’information issus d’une présentation sur les SI de gestion intégrée de l’information sur l’eau au MRE - DISI

3.6.2. La diffusion et l’échange de données

La diffusion et l’échange des données entre les différents acteurs de l’eau restent délicats à appréhender. D’un point de vue technique, il n’existe pas réellement d’interopérabilité entre les systèmes à ce jour. Pour exemple, le PNE, consolidation des PDARE et donc des SIR, souffre aujourd’hui d’une non-actualisation due notamment à des blocages dans les échanges. Ces blocages sont plutôt d’ordre « technique » de compatibilité et de mise à jour des données au niveau des ABH. Quoi qu’il en soit, les échanges sont très ponctuels et la consolidation « difficile » du PNE montre que les « processus de mise à jour » au sens large n’ont pas réellement été prévus. Les systèmes évoluent de manière quasi indépendante. D’un point de vue global, toute demande d’information concernant la mise à disposition d’information pour des tiers doit transiter par la direction concernée avant mise à disposition et aucune donnée n’est accessible de manière « directe ». Les échanges entre les institutions font, la plupart du temps, l’objet de conventions entre les institutions voire ponctuellement font l’objet d’une politique tarifaire (notamment pour les partenaires tiers en dehors du périmètre du ministère).

3.7. Intégration de la composante géographique

La composante géographique est assez diffusée à travers la mise à disposition d’outils SIG pour beaucoup d’institutions du secteur de l’eau. L’écosystème technique SIG repose beaucoup sur le client ESRI que ce soit dans sa composante bureautique aussi bien que pour sa composante web avec ArcGIS Server. Les référentiels géographiques ne sont pas réellement regroupés au sein du MRE même si une application SIG MRE se donne comme ambition de consolider le référentiel géographique sur l’eau à l’échelle de l’Algérie. Si l’INCT reste un organisme de référence en matière de diffusion de l’information géographique sur un certain nombre de
domaines, le SIG MRE n’a pas, à notre connaissance, établi de partenariat avec cette institution au niveau de l’Algérie et le SIG MRE n’est actuellement pas diffusé ou accessible par l’ensemble des institutions impliquées dans le secteur de l’eau. Néanmoins, cette initiative d’un SIG référentiel de l’eau au niveau du MRE nous semble une initiative fondamentale et une brique essentielle dans une démarche globale de mise en œuvre d’un SI National sur l’eau.


3.8.1. Synthèse sur les SI sur la ressource en eau à l’ANRH

L’ANRH est l’établissement central en matière de production de données et d’informations sur les ressources en eau. L’acquisition des données sur le terrain bénéficie d’un bon niveau de formation et de pratique qui repose sur une expérience historique de l’ANRH dans le domaine. À travers les bases BADGES, BASHYD, SIQUEAU et SYRSA, l’ensemble des champs thématiques sur les ressources en eau et en sol dans leur dimension « naturelle » sont couverts. Les bases de données gérées au sein de l’ANRH recouvrent ainsi un réel caractère de « Banque nationale des données sur la ressource en eau » au niveau de l’Algérie tant du point de vue du suivi des ressources en eau (monitoring qualité / quantité des eaux superficielles et souterraines) que du point de vue des données de référence géographique et technique (stations de mesure, référentiel hydrogéologique, carte de référence des sols, historiques des données sur les essais de pompages, coupes techniques des forages...). Les SI de l’ANRH sont tous déployés sous ACCESS, ce qui en limite considérablement la capacité et l’envergure pour des utilisations plus larges (diffusion Web, mise en place d’outils Business intelligence, implémentation de plateformes d’import automatisé, couplage avec des données temps réel etc...). Dans le processus de remontée de l’information, l’ANRH s’appuie sur ses propres ressources et il n’existe aucune interopérabilité entre les bases de données au niveau des secteurs ANRH, au niveau des directions régionales et au niveau de l’agence centrale. L’analyse des flux de l’information au niveau de l’ANRH montre que les données font l’objet d’une double parfois triple saisie jusqu’à sa remontée dans le système centralisé sans réel outil de contrôle automatisé pour l’import et sans que des tests de cohérence poussés ne soient implémentés dans le système.


3.8.2. Le SI de l’ANBT

L’ANBT est l’établissement central pour la production et la gestion de l’information sur les barrages et transfert. Le SI de l’ANBT fait partie des SI les plus robustes. L’infrastructure technique ainsi que la gestion des flux de l’information ont été définis en amont et implémentés spécifiquement pour les besoins quotidiens de l’ANBT. Une cellule de « data management » avec des compétences « métier » est mise en place dans le processus de contrôle des flux de données. Une application de diffusion de l’information est disponible sur le web et propose des référentiels géographiques, de l’information descriptive sur les barrages et des indicateurs de suivi de la qualité et de la quantité.

3.8.3. Synthèse sur les principaux SI au sein du MRE et des ABH

Le PNE vise essentiellement la consolidation des données produites à l’échelle nationale pour l’élaboration de son « plan national de l’eau ». Le PNE est couplé avec des outils de modélisation / simulation (modèle –
Bilan) pour l’analyse croisée entre demande en eau & ressources disponibles. La base du PNE contient donc en son cœur des données brutes mais également une batterie d’indicateurs sur l’eau au sens large. La base du PNE peut donc être considérée, à l’heure actuelle, comme une base de synthèse de référence sur la connaissance et l’état des lieux sur l’eau à l’échelle nationale. Néanmoins, la base du PNE n’est pas mise à jour.

La base du PNE s’appuie très fortement sur les bases PDARE qui ont été constituées au niveau des ABH. Ces bases PDARE consolident les données disponibles au niveau des ABH et sont issues de la base de connaissance présente au niveau de chaque ABH et que constituent les bases SIR (Systèmes d’information Régionaux). Nous retiendrons que l’AGIRE, entité en « chapeau » des ABH ne dispose pas elle-même actuellement d’un SI consolidé issu des ABH.

Dans les observations que nous avons pu faire, si les enjeux de mise à jour du PNE et si la mission de gestion du SI à l’échelle des ABH et d’actualisation des données et des outils par l’AGIRE sont clairement établis, il n’existe à ce jour aucune réelle procédure, ni aucun cadre technique qui propose la déclinaison de ces flux d’information entre les différents partenaires. A ce jour, l’AGIRE publie un état de référence des barrages de manière semestrielle en s’appuyant sur les informations des ABH et de l’ANBT. De la même manière, les procédures de maintien et de mise à jour des bases de données au niveau des ABH sont laissées libres de choix aux ABH sans réelle concertation au niveau national et sans réel cadre d’échange et de partage des données entre producteurs de données et consommateurs de données à l’échelle nationale. Le gros avantage des PDARE & SIR réside essentiellement dans le fait que ces systèmes ont été initiés chacun dans le cadre de même projet et bénéficient donc de la même structure de base. Ceci peut, dans une certaine mesure, garantir une interopérabilité à tous les niveaux même si cette option ne peut être satisfaisante à moyen / long terme.

Enfin, le SNDA, a été développé dans le cadre d’un projet spécifique et s’intéresse plus particulièrement aux rejets dans le milieu naturel. Ce SI a « prévu » son interopérabilité propre en proposant des trames d’échanges standardisées avec les différents niveaux mais sans faire intervenir les ABH à ce stade. Dans ce cas, le cadre de mise à jour a été envisagé techniquement mais ne semble pas encore faire l’objet d’un cadre opérationnel plus large qui fixe les responsabilités en matière de collecte, centralisation & contrôle de l’information. Quoi qu’il en soit, par manque de cadre d’interopérabilité au niveau national, ce SI a développé sa propre interopérabilité mais ne peut garantir une interopérabilité avec les autres SI du secteur de l’eau.
Figure 33 : principaux SI GIRE au sein du MRE et échanges entre les partenaires

3.8.4. Synthèse sur les Autres SI du MRE


Figure 34 : les autres SI au sein du MRE
3.8.5. **Les initiatives au sein de la DISI en matière de démarche commune sur les SIEau**

*Il existe un comité sectoriel de pilotage des SI chapeauté par la DISI du MRE.* Dans le cadre de *la mise en place d’un comité élargi*, des membres ont été identifiés dans les organismes sous tutelle et les directions générales. Le comité élargi se réunira bientôt pour la première fois. *7 volets ont été identifiés pour ce comité, y compris par exemple les outils de développement.* Les aspects liés à *la codification des référentiels seront intégrés dans le périmètre du comité.* Concernant les outils en l’état, c’est un environnement full Microsoft (SQL Server, .NET), client léger, avec ESRI ArcGIS qui est mis en œuvre. Cependant ces choix pourront être discutés par le comité. Le règlement intérieur de ce comité prévoit des réunions régulières, de l’ordre d’une à deux par an. *Le volet 4 concerne la culture métier. Il s’agit de bien définir le vocabulaire du secteur* avec les différentes personnes impliquées. Par la suite la politique de codification s’appuiera sur le vocabulaire.
3.9. Synthèse, recommandations, points d’attentions

3.9.1. Analyse SWOT

Nous avons choisi de conduire l’analyse SWOT à l’échelle globale de l’Algérie et pour l’écosystème « SIEau » au sens large.

3.9.1.1. Les Forces
- La pratique historique de l’ANRH en matière de monitoring de la ressource en eau
- L’existence des bases de données historiques sur la ressource en eau au niveau de l’ANRH
- L’expérience en cours au niveau de l’ANBT sur la mise en place de son système de suivi des barrages
- La décentralisation des responsabilités vers l’AGIRE et les ABH pour la collecte et la consolidation des données à l’échelle des bassins versants
- L’initiative du MREE sur la mise en place d’un SIG national de l’eau qui peut servir de base de données géographique référentielle sur l’eau pour l’Algérie
- La grande maturité de la DISI sur la gestion des Systèmes d’information au sens large
- L’initiative portée par la DISI sur la mise en place d’une démarche commune pour le développement des SI Eau.
- Les expériences réussies sur le SNDA
- La création de l’AGIRE et la définition de ses missions visant « l’actualisation des données et des outils » à destination des ABH.
- L’initiative de l’AGIRE pour la mise en œuvre de protocoles d’échange bilatéraux avec des institutions (notamment ANBT)

3.9.1.2. Faiblesses
- Le manque de coordination entre les différentes échelles et les différents partenaires sur la mise en place d’un cadre commun pour les échanges de données sur l’eau et sur le déploiement de Systèmes de base de données (y compris dans une dimension temps réel).
- Le manque de définition d’un référentiel commun fort et d’un langage commun établi dans le domaine de l’eau
- L’écosystème ACCESS au sein de l’ANRH est un frein pour une ambition plus large des bases de données de l’ANRH, y compris dans une dimension temps réel.
- La fragilité du processus de remontée de l’information au niveau de l’ANRH (au niveau des moyens) ne permet pas d’envisager sereinement de passer vers des flux d’information plus conséquents.
- La plupart des SI ont été développés et déployés sur la base d’un projet « one shot » sans réelle prise en compte des nécessaires processus de mise à jour par la suite (y compris techniques).
- L’absence d’une définition précise sur les moyens et méthodes à déployer pour permettre la mise à jour du PNE et des bases PDARE & SIR.
- L’AGIRE n’est pas en mesure de consolider l’ensemble des données des ABH et n’a pas d’accès à ce jour à l’intranet du ministère

3.9.1.3. Opportunités
- L’initiative du SEMIDE à l’échelle de la Méditerranée, leur retour d’expérience et leur accompagnement tout du long du processus sont un atout important.
- Une réelle prise de conscience des enjeux en matière de données sur l’eau dans les institutions investies dans le domaine de l’eau,
- Les initiatives régionales Tunisie & Maroc, comme expériences de mise en œuvre

3.9.1.4. Menaces
- L’absence d’identification d’un « Système National d’information sur l’Eau » en tant que tel en Algérie et plus largement l’inscription de la démarche SI Eau au cœur d’une stratégie de gestion intégrée des ressources en eau,
Il n’existe pas de « Schéma National des Données sur l’Eau » au niveau de l’Algérie qui fixe et identifie clairement quelles institutions sont en charge de quelles données de référence, à quelle fréquence, avec quels moyens et sous quel horizon. Ce point reste fondamental pour garantir que les moyens sont mis en œuvre au regard des missions confiées et surtout permet de clarifier le rôle de chacune des institutions.

3.9.2. **Les points d’attention et recommandations**

A travers ces analyses nous listons les recommandations et points d’attention suivants :

- Lancer rapidement une refonte complète des SI de l’ANRH en upgradant les SI et en y intégrant l’ensemble des circuits de remontée et contrôle / validation des données. Donner à ces 4 SI le statut de Banque de données nationale sur les ressources en Eau.
- Accompagner les niveaux décentralisés des ANRH dans la remontée des données vers le niveau central en intégrant le développement et le déploiement d’outils compatibles avec le niveau central pour la remontée et la redescence des données et informations,
- Entreprendre une analyse des données historiques au niveau des SI ANRH, proposer une méthode de validation des données stockées, qualifier les données dans ces bases de données et faire migrer ces bases de données dans les systèmes refondus
- Initialiser une démarche sur les référentiels communs de l’eau (codification de paramètres, référentiels géographiques, processus de validation des données, cadre des échanges standards etc...) en s’appuyant d’une part sur les SI de l’ANRH et d’autre part sur le PNE et les SI des ABH,
- Dans ce cadre, poursuivre la démarche du SIG MRE pour en faire la « Banque de données géographique sur l’eau » nationale à destination de l’ensemble des partenaires du secteur de l’eau. Continuer d’identifier l’information Géographique comme un thème « à part » en associant l’ensemble des partenaires clés (y compris l’INCT à terme). Diffuser les référentiels géographiques vers l’extérieur pour s’assurer de leur partage par le plus grand nombre et ainsi limiter les livrables « non compatibles ».
- A travers l’AGIRE, concentrer le développement d’outils standards pour accompagner et faciliter la mise à jour des bases de données des ABH et les échanges de données entre ABH, AGIRE & MREE. Veiller à inscrire ces développements dans le cadre plus global d’une stratégie d’interopérabilité à l’échelle de l’Algérie (référentiel commun)
- Instaurer des règles en matière de développement de SIeau et d’échange de données pour rendre compatibles les développements ultérieurs avec le référentiel commun établi et organiser la concertation avec l’ensemble des acteurs concernés par des développements éventuels.
- Réaliser une étude visant à établir un schéma directeur des données sur l’eau qui fixe les responsabilités en matière de collecte de données et de garantie de maintien des référentiels (notamment géographiques). Intégrer l’ensemble des acteurs du secteur de l’eau ainsi que l’INCT dans la démarche. Ce schéma doit intégrer l’ensemble des composantes (métiers et infrastructure SI) et doit se rendre compatible avec le Schéma Directeur des Systèmes d’Information de la DISI
- Identifier et créer une plateforme « Système national d’Information sur l’eau » qui concentrerait les accès aux banques de données partenaires et la doter d’indicateurs de performance et de gouvernance pour la « manager »
- Organiser des sessions d’échange avec les institutions régionales et françaises en charge d’administrer les SIeau nationaux (notamment ONEMA en France - en charge de l’administration des bases de données nationales sur l’eau- et le SANDRE -entité en charge de l’administration et la diffusion du référentiel commun en France-).

3.9.3. **Bilan global**

Notre analyse nous conduit à montrer qu’en Algérie nous avons d’un côté des banques de données fondamentales sur la connaissance des ressources en eau (ensemble des bases ANRH) et de l’autre côté beaucoup de « méta systèmes » qui veulent stocker et bancariser une large gamme d’informations (PNE,
PDARE & SIR). Ces gros systèmes « échouent » (au moins partiellement) actuellement à se mettre à jour régulièrement. Entre les 2, il n’existe pas de « mise en réseau » entre ces différents partenaires même si des initiatives techniques ont été engagées au niveau de la DISI pour initier cette mise en lien. Au-delà de ça, il n’existe pas d’écosystème qui cadre les échanges tant d’un point de vue « technique » qu’institutionnel. Aussi, tant que la création d’un tel écosystème propre à l’Algérie ne verra pas le jour, il existe un risque non négligeable de voir se développer des systèmes soit au niveau des ABH, soit au niveau du MRE, soit au niveau de l’ANRH qui certainement marqueront une avancée ponctuellement pour la gestion de leurs enjeux propres mais peuvent échouer à améliorer le partage et la fluidification des échanges entre les partenaires nationaux. Le point positif reste que les institutions en situation et en capacité de mettre en œuvre un tel écosystème existent au niveau de l’Algérie. Néanmoins la démarche peut être longue à mettre en œuvre et, en tout cas, nécessite d’être inscrite dans une stratégie nationale sur l’eau pour bénéficier d’un entraînement fort et de la mise à disposition de moyens adéquats.
4. SYSTEMES D’INFORMATIONS SUR L’EAU AU MAROC


4.1. Rappel des éléments de contexte

4.1.1. Stratégie Nationale de l’Eau

Après la loi sur l’Eau de 1995, qui créé les Agences de bassins (ABH) et instaure les principes de pollueur-payeur et préleveur-payeur, la Stratégie Nationale de l’Eau\(^1\) présentée en 2009 vise à pérenniser la satisfaction des besoins en eau en intégrant les différentes politiques et en impliquant les acteurs de l’eau. Cette stratégie inclut, parmi ses orientations, la « Modernisation des systèmes d’information et le renforcement des moyens et des compétences ».

4.1.2. Jumelage « Gouvernance et la Gestion Intégrée des Ressources en Eau au Maroc » avec le MEMEE


4.1.3. Programme d’Approvisionnement Groupé en Eau Potable des Populations Rurales (PAGER)

Entamé en 1995, le PAGER repose sur deux principes : l’utilisation de techniques simples et la participation des bénéficiaires à tous les stades du projet. Les travaux ont porté sur le creusement de puits, de forages, l’équipement de points d’eau et l’aménagement des sources, ainsi que la construction d’ouvrages de stockage et de distribution d’eau.

4.1.4. Plan National d’Assainissement (PNA)

Initié en 2005 et porté par les ministères de l’intérieur et de l’environnement, le PNA vise à résorber le retard dans le domaine de l’assainissement. Il vise deux objectifs à l’horizon 2020 : atteindre un niveau de raccordement au réseau d’assainissement de 80 % en milieu urbain ; rabattre la pollution engendrée par les eaux usées urbaines de 60 % à travers la mise en place de 260 stations de traitement des eaux usées.

---

\(^1\) [http://www.abhshod.ma/strategie-nationale-de-leau.php](http://www.abhshod.ma/strategie-nationale-de-leau.php)
4.1.5. **Plan « Maroc Vert » du MAPM**

Le Plan Maroc Vert vise à faire évoluer le secteur agricole selon deux axes : agriculture moderne et agriculture solidaire. Il inclut notamment le Programme National d’Economie d’Eau en Irrigation (PNEEI).

http://www.agriculture.gov.ma/pages/la-strategie
http://www.agriculture.gov.ma/pages/economie-de-eau

4.2. Cartographie des acteurs impliqués dans le processus GIRE


4.2.1. **Le ministère délégué de l’Eau**

Le Ministère délégué de l’Eau au niveau du Maroc est en charge des questions de gestion intégrée des ressources en eau au niveau du Maroc. La DRPE (Direction de la Recherche et de la planification des ressources en eau) est la direction centrale en matière de connaissance et de planification sur les ressources en eau avec pour missions principales :

- La recherche et l’évaluation des ressources en eau ;
- L’évaluation des ressources en eau superficielles et souterraines ;
- La Planification et la Gestion des eaux ;
- Le Contrôle et la protection de la qualité des ressources en eau ;
- L’Étude des ouvrages hydrauliques ;
- La réalisation, la maintenance et l’exploitation des ouvrages hydrauliques ;
- Les études et la réalisation des petits ouvrages hydrauliques ;
- La recherche-développement dans les domaines du climat et de l’eau ;
- La veille météorologique et l’information sur l’évolution du climat.

Nous retiendrons que pour la planification de l’eau au sens large, le ministère s’appuie sur des Plans Directeur d’Aménagement Intégré des Ressources en Eau (PDAIRE) qui sont élaborés par les ABH et consolidés au niveau de la DRPE. Ces PDAIRE ont abouti à l’établissement du Plan National de l’Eau au niveau du Maroc. Ces documents s’appuient très largement sur les données et informations connues et centralisées au sein des différents systèmes. Dans son fonctionnement, la DRPE s’appuie sur 5 divisions qui couvrent l’ensemble du champ de la GIRE. La Division des Ressources en Eau assure la synthèse du Suivi des ressources en Eau (Souterraines et de surface), la division de la qualité des eaux et de la lutte contre la pollution assure le suivi de la ressource et des rejets d’un point de vue « Qualité des eaux » et la direction de l’approvisionnement en eau potable et assainissement en milieu rural assure un suivi sur les volets « adduction d’eau » et « traitement des eaux usées ». La question de l’eau en lien avec l’agriculture n’est pas traitée au niveau du ministère mais au niveau du ministère de l’agriculture. Enfin, il existe une division entière consacrée à la coordination et l’appui aux ABH (Autorités de bassin hydrauliques).

Enfin, au niveau de la Direction des Affaires Administratives et Financière, la Division organisation et Système d’Information (DOSI) est en charge de la gestion de l’ensemble du volet « infrastructure SI » au niveau du ministère, y compris le volet ayant trait aux SI « Métiers » dans le domaine de l’eau.

Enfin, il est important de relever que la Direction Nationale de la Météorologie fait partie intégrante du Ministère délégué à l’eau.

Les principales missions des ABH sont :

- Élaborer le plan directeur d’aménagement intégré des ressources en eau (PDAIRE)
- Veiller à l’application du PDAIRE
- Délivrer les autorisations et les concessions d’utilisation du domaine public hydraulique
- Fournir des aides financières, prestations de services et assistance technique pour prévenir la pollution ou d’un aménagement hydraulique
- Réaliser mesures, études hydrologiques et hydrogéologiques, ...
- Réaliser les mesures de qualité
- Proposer et exécuter les mesures réglementaires : – en cas de pénurie d’eau déclarée – ou pour prévenir les risques d’inondation
- Gérer et contrôler les ressources en eau mobilisées
- Réaliser les infrastructures de prévention contre les inondations
- Tenir un registre des droits d’eau reconnus, des concessions et des autorisations accordées

Figure 36 : ABH du Maroc
A ce titre, les ABH sont véritablement les entités par lesquelles la gestion intégrée des ressources en eau se matérialise. Leur rôle majeur en matière de « réalisation de mesures » sur la ressource en eau en matière de « gestion et contrôle » de la ressource en eau mobilisée en fait également une « source » de données prioritaire sur les enjeux d'un SI National et sur la capitalisation de l’information.

4.2.1. **Le ministère de l'agriculture et de la pêche maritime**

Ce ministère revêt un caractère important dans les questions de gestion intégrée des ressources en eau notamment par le fait de s'intéresser au principal consommateur d’eau du pays qu’est l’agriculture. Outre ses missions globales de « d’élaboration et de mise en œuvre » des politiques en matière d’agriculture et de développement rural, ce ministère possède entre autres dans sa feuille de route les ambitions de définir et mettre en œuvre la politique du Gouvernement dans le domaine de l’aménagement agricole et de collecter, analyser et diffuser les statistiques et les informations agricoles. Au niveau de ce ministère on retrouve ainsi une direction de l’irrigation et des aménagements de l’espace agricole en charge notamment des questions de planification agricole. Nous retiendrons également qu’il existe des établissements sous tutelle de ce ministère, les Office Régionaux de Mise en Valeur Agricole (9 ORMVA au Maroc) qui ont pour mission de promouvoir ou poursuivre les travaux de remembrement, d’équipement du réseau d’irrigation et de drainage et, d’une façon générale, les aménagements tendant à améliorer la productivité agricole. Pour leurs besoins, les ORMVA réalisent également le suivi des ressources en sols et en eau. Les ORMVA gèrent les grands périmètres irrigués.

4.2.1. **Autres institutions ou ministères**

4.3. Analyse des Systèmes d’Information

Pour mémoire, un système d’information constitue bien l’ensemble de moyens techniques, humains et matériels mis à disposition pour collecter, stocker, contrôler, valider et diffuser une information. Par extension, parmi les Systèmes d’information inventoriés, certains possèdent un niveau de maturité plus avancé que d’autre notamment au regard du degré d’intégration du SI dans une sphère numérique et de base de données.

4.3.1. Approche globale des SI mis en évidence lors de l’inventaire au Maroc

18 Systèmes d’informations au total ont été recensés au niveau du Maroc. La très grande partie des SI identifiés sont fonctionnels. Un (1) SI est « planifié », le SNIEau, qui peut être rapproché d’un méta système de synthèse en ce sens qu’il a vocation à centraliser les données et/ou les métadonnées des différents SI du secteur de l’eau au Maroc. Si sa vocation principale vise bien la mise en réseau des données et métadonnées, l’implémentation technique n’est pas encore réalisée et les contours réels de ce SI seront éclaircis lors des phases de mise en œuvre (planifiée courant Février 2017). Un (1) SI est en cours de refonte. Il s’agit là aussi d’un méta système de synthèse qui est porté par l’ONEE et qui porte sur un observatoire de l’eau. 56 % (10) des SI identifiés sont des Systèmes de synthèse monothématique que nous pouvons associer à des banques de données de référence d’envergure nationale. Ces systèmes sont centralisés au niveau du Ministère délégué à l’eau et couvrent une très grande partie du monitoring de la ressource en eau. Nous citerons le plus emblématique BADRE 21 (Base de données de Ressources en Eau du 21ème siècle) qui concentre les données sur l’hydrologie, l’hydrogéologie et la climatologie mais également des applications plus récentes telles que SPRE (Source de Pollution des Ressources en Eau) et SIG Qualité des eaux. L’application CONDOR et le SI Gestion des barrages couvrent quant à eux le périmètre des ressources stockées. 33 % (6) constituent des métasystèmes de synthèse visant une agrégation de plusieurs sources de données. On retrouve notamment le SNI2au mais également des SIG mis en place au niveau des ABH. Parmi les systèmes locaux, ont été positionnées l’application GDAL2, présente au niveau de l’ONEE, et l’application « FOLLOW » présente au niveau de l’ABH BC et traitant de données en temps réel sur la météorologie et l’hydrologie. Il est très probable que des systèmes analogues puissent exister au niveau des autres ABH. Comme évoqué plus haut, l’ANCFCC et le CRTS, non inclus dans le périmètre des SI présentés ici, pourraient également être inclus dans le périmètre des métasystèmes de synthèse. Les SI monothématique traitent donc majoritairement de la ressource en eau au sens large (75%) avec une centralisation des données, soit directement au niveau du Ministère délégué à l’eau, soit au niveau des ABH. Les SI traitant des usages de l’eau se retrouvent soit au niveau de l’ONEE (GDE), soit au niveau des ABH (SI DPH), soit au niveau du ministère délégué à l’eau (SPRE).
Nous retiendrons que la plupart des SI monothématique (6) possèdent un déploiement de type « base centralisée avec des bases satellites » mettant en relief le fait que la base de données centrale est censée communiquer avec la base centrale pour ces SI. C’est le cas notamment pour le SIG qualité des eaux, SPRE et BADRE 21 bien que des problèmes limitent les échanges avec le niveau national. Les SI de la DMN, BAC 21 et FOLLOW possèdent des bases de données « centralisées ».

4.3.2. **Les Systèmes d’information « mono-thématique » sur la ressource en eau**

| Périmètre thématique des SI « Ressources en eau » | Mesures de débit des cours d’eau  
Mesures piézométriques des eaux souterraines 
Mesures de qualité des eaux (Surface & Souterrain) 
Mesures de climatologie / pluviométrie 
Mesures sur les ouvrages de stockage et de distribution |
|--------------------------------------------------|-----------------------------------------------|

4.3.2.1. **Synthèse sur les SI nationaux**

Ce que nous appelons « système de synthèse mono-thématique », comme énoncé plus haut, représente les SI qui ont vocation à être identifiés comme des « banques de données » de référence au niveau national au moins car ces SI se concentrent sur un type de données sur une (parfois des) thématiques. La Direction de la Recherche et de la Planification de l’Eau est responsable de plusieurs SI de référence en la matière : BADRE21, BAC21, le SIG Qualité. Ces applications sont généralement développées sous Oracle avec une tendance du passage du client lourd (Oracle Forms) au client léger (web). BADRE21 (Base de données Ressource en Eau) est supposée être la base de référence pour la ressource en eau (débit, pluviométrie, piézométrie, qualité...) et comporte des modules de calcul de données élaborées et une partie SIG. Développée en 1990 sous Oracle, BADRE21 est identifiée comme devant être refondue à court terme. BADRE 21 est « distribué » au niveau de chaque ABH qui est la cheville ouvrière de la consolidation des données au niveau national. BADRE 21, s’il est identifié comme SI majeur, souffre de problèmes fonctionnels et techniques lors de la synchronisation. Il est possible que BADRE 21 coexiste avec des systèmes de bancarisation propres aux ABH. BADRE 21 dispose d’un volet qualité des eaux mais qui n’est pas utilisé ; ainsi, le SIG Qualité a été développé. Comme BADRE21, le SIG Qualité est répliqué dans les ABH et des processus de mise à jour depuis les bases des ABH vers les bases centrales sont définis. Le SIG qualité des eaux s’intéresse spécifiquement au suivi de la qualité des eaux du milieu naturel. Ce SI a été élaboré en intégrant des prérogatives de codification communes pour les instances de chaque ABH. Les codifications sont administrées par le Ministère et diffusée de manière synchronisée vers les ABH. Ce « standard » de nomenclature reste cependant propre à ce SI. Parallèlement à BADRE21 existe un système d’annonce de crues, BAC21, alimenté deux fois par jour en télétransmission. Il n’existe pas de passerelle entre BADRE21, BAC21 et le SIG Qualité. **Enfin, le SI Gestion des barrages permet la gestion des barrages au quotidien, tant sur les bilans journaliers que sur l’état des barrages (bathymétrie, envasement).**
4.3.2.2. Les SI périphériques

Les institutions rencontrées et la documentation collectée n’ont pas permis d’identifier d’autres SI qui seraient périphériques aux données sur les ressources en eau. Notamment, aucune information n’a pu être collectée concernant le volet spécifique des eaux littorales ou encore le volet spécifique lié aux forêts ou inventaires forestiers. Néanmoins, il est clair que les ABH initient de leur côté des chantiers en matière de SI qui peuvent venir compléter le périmètre des informations. Nous retiendrons que l’application FOLLOW (ABH BC) est un SI de remontée de l’information en temps réel qui peut très bien « concurrencer » ou compléter le SI BAC 21 en matière de risque inondation.

4.3.2.3. Aspects spécifiques liés à la qualité des eaux et des sols

Le SI Qualité des eaux est présent à la centrale et déporté dans les ABH avec processus de synchronisation. Il est possible d’y importer des fichiers Excel à emplacement fixe. L’outil propose un calcul de classe de qualité avec une grille pour les eaux superficielles, les eaux souterraines, les retenues de barrages. Ce SI consomme des données physico-chimiques mais qui peuvent provenir de laboratoires. Néanmoins, les caniveaux d’intégration sont spécifiques à cette application. L’ONEE-Branche Eau effectue aussi des analyses de la qualité de l’eau via ses laboratoires (un laboratoire central et des laboratoires dans les directions régionales). Ces laboratoires sont équipés du système GDAL (Gestion des Données Analytiques des Laboratoires). Ce système, développé sous Oracle, intègre la saisie terrain via PDA avec transmission GPRS. L’ONEE s’orienterait toutefois vers l’acquisition d’une solution LIMS standard du marché bien que GDAL s’approche fortement de la définition que l’on peut avoir d’un LIMS.

4.3.2.4. Les SI décentralisés ou déconcentrés


Concernant BADRE21 par exemple, l’ABHBC utilise un réplica de l’application centrale quand l’ABHOER a conduit des développements visant à moderniser l’interface et à la passer en client léger. Dans tous les cas concernant cette application et les ABH en général, les remontées vers la centrale sont rares et ponctuelles.

Concernant la gestion des barrages, les ABH disposent de l’outil CONDOR pour l’auscultation. Cet outil devait être complété par un outil d’entretien dont le développement à la centrale n’a pas abouti, ainsi l’ABHOER s’est dotée de son propre outil MECEP. L’ABHBC s’est quant à elle dotée d’un système FOLLOW pour la météorologie et l’hydrologie, pour l’annonce de crue, avec remontée automatique depuis les capteurs. Très majoritairement dans les deux ABH visitées, le socle technique utilisé reste Oracle.
4.3.2.5. Tableau des SI recensés

Tableau 5 : tableau des SI mono thématique sur la ressource en eau au Maroc

<table>
<thead>
<tr>
<th>Nom du SI</th>
<th>Catégories thématiques</th>
<th>Données associées</th>
<th>Etat du SI</th>
<th>Organisme responsable du SI</th>
<th>Type de base de données</th>
<th>Positionnement global</th>
<th>Périmètre géographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG Qualité</td>
<td>Eaux superficielles, souterraines, stockées, Climatologie</td>
<td>Qualité pour l'évaluation de l'état des eaux</td>
<td>Fonctionnel</td>
<td>MDE / DRPE / Sous-Direct Evaluation</td>
<td>Oracle</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>BADRE21</td>
<td>Eaux superficielles, souterraines, stockées, Climatologie</td>
<td>Climatologie, piézométrie, hydrologie, théoriquement qualité.</td>
<td>Fonctionnel</td>
<td>MDE / DRPE / DRE</td>
<td>Oracle</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>BAC21</td>
<td>Eaux superficielles, stockées, Climatologie</td>
<td>Hauteurs d'eau, pluies,</td>
<td>Fonctionnel</td>
<td>MDE /DRPE / Division hydro Météo</td>
<td>Oracle</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>SI Gestion des barrages</td>
<td>Eaux stockées, Infrastructure, Quantité,</td>
<td></td>
<td>Fonctionnel</td>
<td>MREE / DPRE</td>
<td>Oracle</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>Direction de la météorologie Nationale</td>
<td>Climatologie</td>
<td>Quantité,</td>
<td>Fonctionnel</td>
<td>Direction de la météorologie Nationale</td>
<td>Autre</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>SI CONDOR</td>
<td>Eaux stockées, Infrastructure,</td>
<td></td>
<td>Fonctionnel</td>
<td>MRE / DRPE</td>
<td>Oracle</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>GDAL 2 (Gestion des Données d'Analyse des Laboratoires)</td>
<td>Eaux superficielles, souterraines, Ouvrages de traitement et de distribution d'eau potable,</td>
<td>Planification, suivi des prélèvements et échantillons, résultats d'analyse,</td>
<td>Fonctionnel</td>
<td>DNEE Branche Eau / Direction du contrôle de la qualité de l'eau</td>
<td>Oracle</td>
<td>Ressources</td>
<td>National</td>
</tr>
<tr>
<td>FOLLOW de l'ABH-BC</td>
<td>Eaux superficielles, Climatologie,</td>
<td></td>
<td>Fonctionnel</td>
<td>ABH-BC</td>
<td>SqlServer</td>
<td>Ressources</td>
<td>Intermédiaire localisé (ABHBBC)</td>
</tr>
<tr>
<td>SI MECEP</td>
<td>Eaux stockées, Infrastructure,</td>
<td></td>
<td>Fonctionnel</td>
<td>ABH OER</td>
<td>Oracle</td>
<td>Ressources</td>
<td>Intermédiaire localisé (ABHOER)</td>
</tr>
</tbody>
</table>

4.3.1. Les Systèmes d’information « mono-thématique » sur les usages de l’eau et les forces motrices

Le recensement des SI liés aux usages de l’eau à l’échelle nationale a permis de mettre en relief les SI de l’ONEE et son SI GDE (Gestion des données d’exploitation) qui propose des informations sur les volumes d’eau distribués en plus d’informations sur les infrastructures de distribution elles-mêmes. Le SI SPRE (Source de pollution des eaux) est l’autre SI majeur identifié dans le cadre du suivi des rejets (localisation et type de rejet + données de qualité des eaux et estimation des débits rejetés). Ce SI a été développé récemment et constitue un point d’entrée important dans le monitoring des rejets. Enfin chaque ABH possède son propre SI de gestion du Domaine Public Hydraulique (DPH). Les informations sont consolidées au niveau des ABH et des transmissions de ces informations peuvent être faites (de manière non régulière) vers le Ministère de l’agriculture notamment. A ce titre le ministère de l’agriculture possède un SI (SIG Irrigation) qui couvre une partie du périmètre sur la demande en eau agricole et sur le recensement agricole. Néanmoins le SIG irrigation a été positionné dans les « méta-systèmes » de synthèse du fait notamment que ce SIG tente d’agréger des informations beaucoup plus larges que la simple demande en eau et notamment des données sur les ressources en eau. Enfin, nous avons identifié de manière opportune le Haut-Commissariat au plan
qui est en charge de consolider les informations sur le recensement de population (demande en eau). Cette institution n’a pas été rencontrée et aucune information complémentaire n’a été collectée sur ce SI.

4.3.2. **Les méta-systèmes de synthèse**

Par méta-système de synthèse nous entendons les SI qui visent une agrégation de sources de données différentes et/ou multi acteurs. Typiquement les observatoires sont considérés comme des méta-systèmes de même que les SI visant la valorisation d’informations.

Parmi ces SI nous identifions notamment le **SI Observatoire de l’environnement porté par le ministère délégué à l’environnement** et qui vise principalement à consolider une batterie d’indicateurs environnementaux, liés de près ou de loin à la ressource en eau, en s’appuyant sur les niveaux déconcentrés du ministère. **Cet observatoire ne consolide que des indicateurs pré-calculés au niveau régional** et ne prend pas en compte les données « brutes ». Ce SI est fonctionnel (en cours de consolidation) pour une diffusion large sur le Web. Des données spatiales sont d’ores et déjà intégrées.

Nous identifions également l’initiative de l’**ONEE qui cherche à « refondre » son Observatoire de l’eau qui intègre des données en provenance du haut-commissariat au plan** (population, démographie etc...), des données en provenance des **ABH sur les ressources en eau** et des données s’appuyant sur son propre **système GDE**. Initié en 2005, cet observatoire semble être en cours de refonte mais offre l’avantage de tenter une consolidation à l’échelle nationale de diverses sources d’informations. Le **Sig irrigation du ministère de l’agriculture** est également identifié comme un « Méta-système de synthèse » avec un intérêt plus marqué sur la grande hydraulique. On y retrouve des données sur les ressources naturelles et stockées (météo, qualité, niveaux d’eau dans les barrages...) ainsi que toutes les informations visant l’allocation des ressources (périmètres irrigués, besoins en eau des plantes, fertilisants...) et le suivi des performances (rendements des cultures ...). Ce Sig irrigation est un SI d’importance sur les questions agricoles. **Outre des données remontées par les services déconcentrés du ministère et les offices régionaux de mise en valeur agricoles au sein du ministère, les sources de données de la DMN et de la DRPE sont sollicitées** régulièrement pour la mise à jour de ce SI.

A un niveau plus déconcentré, nous avons pu rencontrer un **ORMVA (Tadla)** et avons tenté de détailler son **SI** au sens large. **Ce SI n’est pas réellement intégré et les briques ne communiquent pas bien entre elles.** On y retrouve un noyau **SIG de base (Desktop)** servant essentiellement à la cartographie des périmètres irrigués avec une mise à jour aléatoire. Nous avons constaté que l’ORMVA Tadla possédait également un **système de télémesure en temps réel** pour du suivi météorologique et hydrologique. Ce système est indépendant et ne communique pas avec la brique SIG. Enfin, l’ORMVA effectue également des **analyses de sol** dans un laboratoire dédié. Ces données sont **capitalisées dans des fichiers Excel**. Sans réellement savoir si cet ORMVA est représentatif des autres ORMVA, il est vraisemblable que les autres ORMVA fonctionnent de la même manière.

**Au niveau des ABH que nous avons pu rencontrer, il existe des initiatives fortes (techniquement robustes et cohérentes) de création de SIG pour l’ABH entière.** Derrière ce mot SIG, les ABH visent très clairement un SI de synthèse permettant une clé d’entrée vers l’ensemble des sous-systèmes composant les SI des ABH. Ces SIG interfacent par exemple l’instance déconcentration de SPRE ou SIG Qualité des eaux ou encore BADRE 21 etc. Sans réellement savoir à quel niveau sont l’ensemble des ABH, les ABH rencontrées (BC et OER) ont permis de mettre en evidence que les ABH dévelloppaient de véritable SI intégrés à leur niveau en intégrant beaucoup de contraintes de dialogue entre les différents systèmes et s’intégrant dans un cadre de « schéma directeur des SI » au sein des ABH.

Figure 40 : exemple du SIG ABH OER avec gestion des interfaces vers l’ensemble des "Sous-SI" de l’ABH

Le dernier « Métasystème » identifié est le SNI Eau. Un chapitre lui est dédié plus bas dans le document. Le SNI Eau reste encore aujourd’hui à l’état de projet et le périmètre fonctionnel ne semble pas encore clairement établi.

Tableau 6 : tableau des métasystèmes de synthèse au Maroc

<table>
<thead>
<tr>
<th>Métasystème</th>
<th>Etat du SI</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observatoire de l’Environnement</td>
<td>Fonctionnel</td>
<td>Si visant la publication d’un catalogue d’indicateurs environnementaux sur l’environnement au sens large et agrégé des indicateurs seulement. Les données sont traitées au niveau déconcentré du ministère.</td>
</tr>
<tr>
<td>SIG ABH OER</td>
<td>Fonctionnel</td>
<td>Exemple d’un SIG unificateur au niveau de l’ABH OER illustrant les initiatives des ABH à créer des systèmes unifiés à leur niveau.</td>
</tr>
<tr>
<td>SI ORMVA</td>
<td>Fonctionnel</td>
<td>Ensemble des outils techniques et méthodologiques à disposition des ORMVA. Si non intégré s’appuyant sur des briques très diverses et sans communication réelle entre les briques</td>
</tr>
<tr>
<td>SI Observatoire de l’eau</td>
<td>En refonte</td>
<td>Si de synthèse sur les usages de l’eau au sens large avec mise en parallèle de différentes sources de données issues soit des ABH, de la DRPE ou encore du haut-commissariat au plan</td>
</tr>
<tr>
<td>SIG Irrigation</td>
<td>Fonctionnel</td>
<td>Si de synthèse et orienté sur la grande hydraulique mais visant une synthèse de différentes sources de données aussi bien sur la demande en eau que sur les ressources en eau.</td>
</tr>
<tr>
<td>SNI Eau</td>
<td>Réalisation planifiée</td>
<td>Ecosystème unificateur pour les données sur l’eau au Maroc. Périmètre encore mal défini.</td>
</tr>
<tr>
<td>Portail Géospatial</td>
<td>Fonctionnel</td>
<td>Portail SIG Web diffusant les référentiels sur l’eau (Cours d’eau, Stations de mesures, nappes, Barrages &amp; retenues).</td>
</tr>
</tbody>
</table>
4.4. Processus de collecte, de centralisation, de validation & de contrôle

Par processus de collecte nous entendons décrire l’ensemble de la chaine de production de la donnée à son niveau le plus bas (collecte sur site) jusqu’à son entrée dans la base de données.

4.4.1. Mode d’acquisition

On distinguerà 4 grands modes d’acquisition de l’information que sont :

<table>
<thead>
<tr>
<th>Mode d’acquisition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enquête spécifique et Imagerie satellite</td>
<td>Essentiellement pour les données avec des fréquences de mise à jour annuelle voire pluri-annuelle</td>
</tr>
<tr>
<td>Capteur et télétransmission uniquement</td>
<td>Pour des données temps réel</td>
</tr>
<tr>
<td>Saisie manuelle + Capteurs de télétransmission</td>
<td>Lorsqu’il y a un panachage entre les données remontées en temps réel et des processus plus manuels</td>
</tr>
<tr>
<td>Saisie manuelle sur papier uniquement</td>
<td>Lorsque que le mode de collecte est essentiellement manuel</td>
</tr>
</tbody>
</table>

Ces 4 types d’acquisition sont mis en œuvre au niveau du Maroc avec parfois des panachages.

Pour les SI monothématique on s’aperçoit que le mode de collecte reste majoritairement une saisie manuelle sur le terrain (58 % du temps). Dans 17 % des cas (2 SI) le mode de collecte est un panachage entre saisie manuelle et capteurs de télétransmission. Il s’agit notamment du SI de la DMN et du SI sur la gestion des barrages. Dans 17 % des cas (2 SI) le mode de collecte est uniquement lié à des capteurs de télétransmission. Il s’agit notamment de l’application BAC 21 (Gestion des annonces de crues) et de « FOLLOW » de l’ABH BC.

Dans le SI de l’ORMVA (métasystème de synthèse) il existe également des remontées de données issues de capteurs télétransmis sur le volet « climatologie ». Rappelons également que dans le SIG irrigation, des données agro-climatiques sont compilées avec des modes de collecte essentiellement manuels mais avec également des réseaux de suivi en temps réel en cours d’élaboration (partenariat avec la DMN). Le SIG irrigation s’appuie également sur des modes de collecte beaucoup plus ponctuels (étude spécifique sur la PMH, enquêtes spécifiques dans le cadre du RGA etc.).

**Enfin la spécificité du « mode de collecte » au sens large au Maroc repose sur le fait que l’acquisition des données est intégralement sous la responsabilité des ABH. Ces dernières ne réalisent pas les mesures directement par elles-mêmes mais ont complètement externalisé le processus par le biais de contractualisation (marché public) avec des structures externes. Dans le processus, l’ABH fixe ses exigences (délais, format de rendus et fréquence de mesure).**

L’imagerie satellitaire est utilisée notamment pour le suivi des cultures sur les périmètres irrigués (ORMVA, Ministère de l’agriculture) et également par la DMN. Ces processus d’acquisition ne sont jamais exclusifs et s’intègrent dans un ensemble. Nous pouvons souligner qu’il est très vraisemblable que l’ANCFCC et le CRTS utilisent les données d’imagerie de manière courante pour leurs travaux (institutions non rencontrées).

Enfin, pour les métasystèmes de l’observatoire de l’eau, de l’observatoire de l’environnement et du SNI'eau, il n’existe pas de processus de collecte défini dans le sens ou ces systèmes n’ont pas vocation à collecter l’information à son niveau le plus bas mais plutôt à centraliser les informations que d’autres structures ont acquises. **Le rôle reste donc cantonné à la stricte centralisation de l’information.**
4.4.2. **Les modes de centralisation de l’information**

4.4.2.1. Cas général

Outre les modes de *centralisation de l’information en temps réel dont le processus est clair* (transmission GSM/ GPRS directe vers un serveur central), dans le cas général observé, comme précisé plus haut, ce sont les ABH qui sont essentiellement en charge de la collecte des données et de leur transmission vers le niveau central. Dans ce cadre, les échanges par Dump / VPN sont très largement développés au niveau du Maroc qui en a fait son moyen d’échange privilégié. Ainsi BADRE 21, l’application SPRE et l’application Qualité des eaux possèdent *des instances de base de données dans chaque ABH pour une consolidation synchrone*. Notons toutefois que la mise à jour de BADRE 21 semble souffrir de quelques problèmes (problème concret non identifié à ce stade). Notons également que pour l’application SPRE et Qualité des eaux, *le rôle de mise à jour des référentiels communs est identifié comme une mission de « l’application centrale » qui permet de se prémunir des incohérences entre le SI central et les SI déconcentrés*. Du point de vue du workflow, *les interfaces de saisie des données sont relativement développées au niveau des ABH pour permettre une saisie en ligne voire une intégration directe sur la base de format de fichier cohérent et stipulés dans les cahiers des charges émis vers les prestataires externes*. Au niveau du ministère de l’agriculture le mode de centralisation *reste assujetti à des envois réguliers de fichiers Excel* pour l’intégration dans la base centrale. Des projets sont en cours pour une intégration directe des résultats dans le SIG irrigation. Enfin pour les autres SI identifiés, la centralisation de l’information semble être effectuée par simple envoi de fichier puis ressaisie dans la base centrale.

4.4.2.2. Cas spécifiques des observatoires


4.4.3. **Validation & contrôle**

Dans l’analyse que nous avons pu faire et sur ce qui nous a été donné de voir, *la grande majorité des SI ne possède pas système de contrôle / validation de la donnée lors de son stockage (contrôle automatique)*. Sur les SI Qualité des eaux et SPRE, des contrôles sont opérés sur les nomenclatures et le référentiel commun entre les instances déconcentrés et le SI au niveau central. Les contrôles sur la validité des résultats du point de vue de l’expertise « métier » sont opérés uniquement sur quelques volets de BADRE 21 (hydrologie notamment). De manière générale, les contrôles sont néanmoins réalisés sur la base d’un « dire d’expert ». Rappelons que les grands SI du Maroc dépendent de la remontée des données par les ABH qui sont donc garants de l’information remontée.

4.5. **Focus sur le flux de données entre ABH & DRPE sur le volet « ressources en eau »**

4.5.1. **Acquisition**

L’acquisition de la donnée terrain des réseaux de suivi est pour partie externalisée : les prestataires suivent un cahier des charges et sont audités. Pour l’hydrologie, ce sont des gardiens qui sont salariés de l’ABH. L’acquisition automatisée concerne la pluie, la piézométrie, l’hydrologie, avec des systèmes parfois pilotes. Ces acquisitions automatisées font l’objet de confrontations ponctuelles à des mesures manuelles pour vérification.
4.5.2. Intégration dans les SI des ABH

Les données collectées sur le terrain sont ensuite intégrées dans les systèmes d’information des ABH. Les ABH sont autonomes dans le choix des SI et les pratiques sont hétérogènes : saisie manuelle, import de fichier, intégration directe pour les données issues de capteurs... Dans le cadre de l’application FOLLOW de l’ABHBC pour l’annonce de crue par exemple, les données sont stockées en temps réel dans une base spécifique. Mais elles sont saisies une fois par mois dans l’installation locale de BADRE, de sorte que cette base soit à jour. Une interface de transfert automatisé est cependant prévue. À l’ABHBC, les pluies sont saisies mensuellement en plus de quelques stations temps réel. Les données ainsi intégrées permettent aux ABH de gérer leur niveau opérationnel. Les ABH visitées se sont notamment dotées de SIG intégrateurs à différents niveaux : le SIG de l’ABHBC permet la visualisation des données quand celui de l’ABHOER inclut des modules de gestion.

4.5.3. Centralisation au niveau national

Les ABH communiquent ensuite leurs données à la centrale selon différents modes : saisie directe via interface web ou VPN, envoi de fichiers Excel pré-formatés, dumps de bases de données... Ces différences tiennent aux spécificités techniques de chaque SI. La fréquence de remontée de l’information est variable. Certaines remontées n’ont pas lieu, ou plus rarement que prévu, en raison de difficultés techniques ou fonctionnelles. Concernant BADRE21 par exemple, des réplicas (éventuellement adaptés) sont présents dans les ABH et la remontée vers la centrale se fait par envoi de dump (sauvegarde de base de données). Cet envoi se fait cependant à fréquence faible et irrégulière. L’un des problèmes rencontrés touche à la codification des points qui utilise une codification par zone. Certains points peuvent être affectés à une zone erronée du fait d’approximation de localisation et des problèmes de doublons de points ou de codes peuvent survenir. La consolidation ne serait donc pas fiable. Concernant BAC21, les mesures sont télétransmises directement au niveau national 2 fois par jour. La passerelle avec BADRE est envisagée mais n’est pas implémentée.
Figure 42 : schéma de flux global des échanges au niveau de la DRPE au Maroc
4.6. Architecture et infrastructure des SIEAU

4.6.1. Systèmes de centralisation de l’information

L’écosystème global au niveau du Maroc s’appuie très largement sur ORACLE qui semble être le système de stockage historique. La plupart des applications ont initialement été développées avec ORACLE forms et depuis redéveloppées pour être diffusées sur le web. Aussi, la quasi-totalité des SI monothématique sont donc sous ORACLE à l’exception du SIG irrigation, observatoire de l’environnement et FOLLOW qui sont sous SQL Server. Au niveau de la gestion de l’infrastructure, chaque ABH possède son propre département SI et la DOSI (Division Organisation et Systèmes d’Information) est en charge de la gestion des SI au niveau du ministère délégué de l’Eau pour la partie « infrastructure ». C’est également la DOSI qui est en première ligne pour la mise en œuvre du SNIEau. D’un point de vue global, les directions des SI au niveau des ABH et des ministères semblent bien structurées. Au niveau local (ORMVA notamment) il n’y a pas de réelle direction des SI qui gère la partie « infrastructure des bases de données » et le système de centralisation repose sur beaucoup de briques très hétérogènes.

4.6.2. La diffusion et l’échange des données

La diffusion et l’échange des données restent difficiles à appréhender. L’information de base est disponible au niveau des ABH. Au niveau interne, la tutelle des ABH par le ministère délégué à l’eau favorise les échanges d’information entre les ABH et le niveau central. La mise en place « en standard » des échanges par dump / VPN assure la fluidification des échanges entre les ABH et le niveau central. Cependant, le fait que les ABH développent en propre des SI pour leurs besoins et que ces SI ne sont « pas connus » du niveau central entraîne que des données ne peuvent « techniquement pas » être échangées. Vers l’extérieur, il y a une politique tarifaire pour la mise à disposition des données. Cette politique tarifaire est laissée libre à chaque ABH. Au niveau de l’ONEE les échanges de données internes sont réalisés de manière simple par échange de fichiers. Vers l’extérieur, l’ensemble des données ne sont pas diffusées. Une mise à disposition sur demande peut être faite. Il est à noter que les échanges entre ministère ou institution sont réalisés en bonne
coopération mais que les écosystèmes d’échanges ne sont pas mis en place. Le SNIÉau doit s’intéresser à ce volet.

4.7. Intégration de la composante géographique


![Figure 44 : extrait du Portail Géospatial du Ministère délégué de l'Eau du Maroc](image)

4.8. Le projet de Système National d’Information sur l’Eau (SNIÉ)

Le projet de Système National d’Information sur l’Eau est mené par la DAAF/DOSI et des comités SNIÉ métier et informatique. Le SNIÉ n’est actuellement pas opérationnel. La mise en œuvre du SNIÉ Maroc a été divisée en 2 parties : une étude fonctionnelle puis une étape de réalisation. Si l’étude fonctionnelle a déjà été réalisée, la réalisation est planifiée pour mi à fin Février 2017.

4.8.1. Description du SNIÉ

Depuis 2006, le SNIÉ est prévu comme une plateforme permettant d’échanger et de mettre à disposition des données et informations, que ce soit vers le public ou dans un cadre interne (avec identification). Le SNIÉ ne se substituera donc pas aux banques de données et systèmes existants mais sera axé plutôt vers la « métadonnée ». Dans la définition globale du SNIÉ, il devrait donc exister un SNIÉ « partenaire » (déployé au niveau du ministère et s’occupant de missions de consolidation / centralisation avec un accès élargi pour l’ensemble des partenaires pour l’alimentation en données) et un SNIÉ « central » avec une visée de diffusion de l’information pour les partenaires mais également vers le grand public. L’alimentation du SNIÉ en informations se fera à travers le SNIÉ partenaire pour les métadonnées, les données publiques et les données
privées. Le SNIE partenaire se chargera ensuite de transférer les données publiques au SNIE central. Ce type d’accès est uniquement réservé à l’administrateur du partenaire pour pouvoir charger directement les métadonnées, les données et les documents sur le SNIE partenaire.

**Figure 45 schéma fonctionnel de principe du SNIE**

4.8.2. *Exigences fonctionnelles attendues du SNIE*

4.8.2.1. SNIE central

Les principales exigences fonctionnelles du SNIE central sont détaillées dans les points suivants :

- Permettre une navigation trilingue (arabe, français, anglais) ;
- La gestion des utilisateurs est centralisée au niveau du SNIE Central comprenant en particulier :
  - Authentification ;
  - Gestion des adhésions des partenaires ;
  - Gestion des utilisateurs, des profils et des habilitations.
- Prévoir les profils des utilisateurs suivants au niveau du SNIE Central :
  - Administrateurs du SNIE ;
  - Utilisateurs des partenaires du SNIE ;
  - Utilisateurs privilégiés : universités, organismes internationaux, ...Large public.
- Prévoir les profils des utilisateurs suivants au niveau du SNIE partenaire :
  - Administrateurs du SNIE partenaire ;
  - Profil utilisateur avec pouvoir d’alimentation de la base de données
  - Les utilisateurs du partenaire pouvant utiliser le SNIE central seront déclarés à travers un workflow de création d’utilisateur qui est un workflow global pour le SNIE.
- *Permettre aux utilisateurs d’accéder, selon leurs profils, aux fonctionnalités de consultation, de production, de suivi d’indicateurs et d’analyse.*
- Prévoir différents types d’informations à extraire du SNIE :
  - *Sources d’information structurées (Spatiales, tabulaires) : proviennent de la base de données structurée ;*  
  - *Sources d’information non structurées. : sont disponibles sous forme de documents.*
- **Permettre la recherche sur les métadonnées selon plusieurs critères (producteur, domaine, catégorie, couverture, mots clés, zone géographique, plage temporelle...).**
- **Permettre d’extraire des informations selon les habilitations ;**
- **Permettre l’accès aux données privées de façon transparente selon les habilitations en mettant à la disposition de l’utilisateur les possibilités d’afficher ou de télécharger directement sur le poste client.**
- **Permettre la consultation des informations, en utilisant éventuellement des filtres :**
  - *Données : sous forme de couches spatiales, tableaux, graphiques,*  
  - *Métadonnées : sous forme textes.*
Documents : sous forme textes, images, vidéo, ...

- Intégrer la gestion des alertes : envoi de message de rappels aux partenaires pour mettre à disposition les données périodiques.
- Intégrer la visualisation des informations géographiques : Données sous forme de couches en utilisant un outil de visualisation SIG.
- Intégrer la synchronisation automatique, selon un workflow prédéfini (périodicité, alertes, ...), des données publiques et des mises à jour des métadonnées au niveau du SNIE partenaire vers le SNIE central.
- Diffuser les indicateurs d’exploitation du SNIE (statistiques d’utilisation du SNIE, données ; informations les plus consultées/extraítes/... ...)

Certaines fonctionnalités du système SNIE partenaire doivent respecter des règles de d’exploitation des données notamment l’extraction des informations :

- Chaque extraction d’informations est accompagnée d’une fiche expliquant les méta-informations relatives aux informations extraites précisant en particulier la source d’information (SNIE), les filtres utilisés pour l’extraction des données, leur domaine selon le référentiel, ...
- Le producteur des données est cité dans toute transmission d’information, sauf éventuellement lors de l’agrégation d’informations.

4.8.2.2. SNIE partenaire

Les principales exigences fonctionnelles du SNIE Partenaire sont détaillées dans les points suivants :

- Prévoir un seul profil des utilisateurs dont la tâche principale est l’alimentation en données publiques et privées
- Administrateur du SNIE partenaire
- Permettre une navigation en une seule langue (en français).
- Alimentation du SNIE local en informations (métadonnées, données publiques et privées, et documents), en respectant la structuration du référentiel de classification des informations (chargement dans la base de données SNIE partenaire), avec la possibilité de mise à jour (ajout/modification/suppression), et leur historisation : données, rapports.
- Contrôle automatique des données lors de l’opération d’import avec notification en cas d’anomalies : vérification de vraisemblance des données, vérification par le partenaire des plages de valeurs des données qu’il a importé dans le SNIE.
- Permettre l’accès aux données privées aux autres partenaires de façon transparente, via le SNIE central.
- Transfert des données publiques et des métadonnées mises à jour vers le SNIE central selon un workflow prédéfini (périodicité, alertes)

4.8.3. Fonctionnalités techniques du SNIE

L’architecture logicielle arrêtée pour la réalisation du SNIE sera n-tiers basée sur une architecture orientée services (SOA : Service Oriented Architecture). C’est une approche de conception logicielle Client / Serveur à travers laquelle une application (SNIE partenaire) se constitue de fournisseurs de services et une autre (SNIE central) de consommateurs de services.

4.8.4. Gestion des accès

Deux types d’accès sont offerts par le SNIE :

- Accès aux informations et données publiques ;
- Accès aux informations et données privées.
Le premier type d’accès est destiné au grand public. Le second type est destiné aux partenaires du SNIE, et nécessite l’authentification, et la gestion des habilitations en fonction des recommandations des comités SNIE dans le respect de la convention SNIE.

4.8.5. **Implication et attentes des partenaires**

Dès 2006, le Secrétariat d’Etat chargé de l’Eau identifiait comme partenaires potentiels les ABH, les ORMVA, les organismes de distribution d’eau, mais aussi des collectivités, universités... Les acteurs que nous avons pu rencontrer ont été sollicités par le passé pour les phases d’étude préalables au SNIE, notamment pour recenser quelles données chacun était prêt à fournir ou désirait obtenir, mais aujourd’hui ces acteurs ne semblent pas être informés de l’avancée du projet. Ils manifestent toutefois des attentes en termes de fluidification du circuit de l’information. Parmi les attentes exprimées par les partenaires, faciliter la GIRE, fluidifier les échanges de données, pouvoir accéder à des banques de données de référence. L’aspect « volontaire » de la remontée de l’information dans le SNIE est en contradiction avec cette dernière attente.

4.9. **Synthèse de l’analyse des SI dans le domaine de l’eau à l’échelle du Maroc**

4.9.1. **Synthèse sur les SI ressources en eau**

L’ensemble de l’écosystème SI traitant des données sur la ressource en eau est bien identifié dans son processus de collecte, centralisation et stockage de l’information. **L’ensemble de ces SI repose sur un échange entre les ABH et la DRPE avec Oracle en backbone SGBD.** L’élément central du processus est le principe d’acquisition de la donnée de base par les ABH. Il est à noter que les ABH ont complètement externalisé ce processus en ayant recours à des marchés publics sollicitant des partenaires privés. Les ABH sont garantes du contrôle des données remontées et des « audits » ponctuels sont réalisés pour s’assurer du respect des principes de prélèvement. *Il apparaît néanmoins que l’application BADRE 21 (développée sur Oracle) arrive en « fin de vie » et nécessite une refonte globale, notamment au niveau du ministère. Cette problématique est d’ores et déjà bien identifiée au niveau des ABH qui ont elles-mêmes lancé des projets « d’amélioration » de BADRE 21 ou encore des projets de connexions des informations de BADRE 21 avec d’autres SI au niveau de l’ABH. Le SIG Qualité et le SIG Sources de pollutions (SPRE) ont été développés par deux services de la même division, dans deux démarches distinctes mais néanmoins dans un laps de temps proche. Ces 2 applications ont été développées avec des instances de base de données dans chaque ABH. Les processus d’échange se font par dump et ces applications sont full web. Ces deux applications utilisent des codifications distinctes. Cependant, du fait du besoin de rapprocher les données de ces deux applications (tournées vers la qualité des eaux), un nouveau marché de fusion est prévu dans lequel une codification commune sera nécessairement mise en place. Ce déroulé met en évidence l’absence d’une démarche pérenne de gestion d’un référentiel commun pour la codification et l’échange. Le SNIE ne semble pas s’être accaparé cette problématique de création d’un écosystème d’échange global pour le moment. En effet le projet SNIE repose essentiellement sur la création d’un écosystème technique déployé chez chaque partenaire qui assurera l’interopérabilité au sein du SNIE mais pas en dehors. Pourtant, parmi les attentes des futurs partenaires du SNIE, le fait de « faciliter la GIRE » et de « faciliter les échanges de données » sont deux objectifs qui reposent notamment sur l’utilisation d’un langage commun tout du moins d’une codification commune. *L’application BAC 21 gère spécifiquement des données de prévision de crue et repose sur un système de remontée de l’information en quasi temps réel.** Cette application semble robuste. La DMN dispose d’un SI global très robuste et peut être considérée comme le fournisseur prioritaire de la donnée météorologie, bien que des données similaires soient acquises par le biais des ABH pour leurs besoins propres de suivi hydrologique. La DMN est en capacité de délivrer des « produits » climatiques à la demande avec une politique tarifaire. Les SI traitant des ressources en eau stockées semblent s’appuyer sur le SI CONDOR dont le partage entre toutes les ABH et le ministère n’est pas clair actuellement. Il existe un SI de gestion des barrages disponibles au niveau central mais dont la communication exacte avec les ABH n’est pas explicite non plus.

4.9.2. **Synthèse sur les SI « usages de l’eau »**

Outre le SI SPRE (déjà détaillé plus haut), les SI sur les usages de l’eau s’appuient en grande partie sur les données de l’ONEE et son système GDE (essentiellement gestion des données d’exploitation) et sur les données disponibles au niveau des ABH concernant le Domaine Public Hydraulique. Le SIG irrigation du ministère de l’agriculture dispose également de données sur les usages de l’eau agricoles bien que positionnés dans les méta-systèmes de synthèse. Enfin notons que le haut-commissariat au plan est un partenaire important en matière de données démographiques. Ces données démographiques ont vocation à être intégrées dans le projet d’observatoire de l’eau initié par l’ONEE.

4.9.3. **Synthèse sur les méta-systèmes de synthèse**


4.9.4. **L’initiative du SNIE**

*Le SNIE n’est pas encore opérationnel*, bien que la démarche semble avoir été engagée depuis pas mal de temps maintenant, seule la phase d’analyse des besoins et l’étude fonctionnelle ont été réalisées. Si ces exigences fonctionnelles et techniques ont été posées, son développement n’est toujours pas engagé avec néanmoins une planification prévue début 2017. L’orientation prise par le SNIE semble reposer essentiellement sur une dimension de « mise en réseau » des différentes informations et données à travers une plateforme technique. Dans son étude de développement, une mission pour la définition d’un référentiel commun sur l’eau à l’échelle de l’ensemble du Maroc est inscrite. Il conviendra d’être vigilant sur le volet « administration du référentiel commun ». Le SNIE est porté par la DOSI au niveau du ministère délégué à l’eau et les attentes exprimées par l’ensemble des partenaires sont fortes. *D’un point de vue « management » il est à souligner qu’un suivi des performances du SNIE est d’ores et déjà envisagé.*
4.10. Synthèse, recommandations, points d’attention

4.10.1. Analyse SWOT

Nous avons choisi de conduire l’analyse SWOT à l’échelle globale du Maroc et pour l’écosystème « SIeau » au sens large.

4.10.1.1. Les Forces

- La très bonne maitrise et les très bonnes initiatives de la part des ABH dans le développement d’outils SI robustes pour leur gestion de données au quotidien ; L’échange de bonnes pratiques entre ABH.
- L’identification de « banques de données nationales » sur le volet ressources en eau (BADRE 21, Qualité des eaux, BAC 21).
- Le développement des applications Qualité des eaux et SPRE et leur prise en compte immédiate par le niveau décentralisé (ABH). La très bonne intégration du rôle d’administrateur des codes et référentiels au niveau de ces 2 applications (même si les codes ne sont pas partagés entre les 2 applications)
- La très bonne intégration du rôle d’administrateur des codes et référentiels au niveau de ces 2 applications
- La grande maturité de la DOSI dans la gestion des Systèmes d’information d’un point de vue technique
- L’identification claire de Directions des Systèmes d’Information au niveau des ABH
- La pratique déjà éprouvée d’échanges de données entre le niveau central et les ABH (BADRE 21, SPRE, Qualité des eaux, barrages...)
- La pratique des échanges de données entre les différentes institutions au sens large
- Les écosystèmes robustes (ORACLE, SQL Server, ArcGIS Server) et donc la pratique liée à ses systèmes qui est très largement répandu au sein des institutions.
- L’initiative d’observatoire de l’eau par l’ONEE.

4.10.1.2. Faiblesses

- Le manque de coordination dans les développements effectués entre le niveau central et les ABH notamment. Ce manque de coordination aboutit à des développements qui peuvent être très robustes au niveau d’une ABH mais qui présentent des difficultés lors de la remontée vers le niveau central, notamment en l’absence d’un cadre d’interopérabilité.
- La non-prise en compte de la définition d’un référentiel commun et d’un cadre d’interopérabilité entre les différents niveaux. Ce cadre est un point important si l’on veut continuer à laisser les ABH développer leur propre SI tout en gardant une dimension de centralisation de l’information à l’échelle nationale.
- Les difficultés d’alimentation de la principale banque de référence sur la ressource en eau (BADRE 21)
- Le caractère plus ou moins « volontaire » de l’alimentation du SNIE inscrit dans sa conception

4.10.1.3. Opportunités

- La très forte implication et responsabilisation des ABH dans l’ensemble du processus d’acquisition des données à un niveau déconcentré avec l’autonomie financière qui a conduit à une externalisation réussie.
- L’inscription du SNIE comme un projet majeur dans le processus de gestion intégrée au sens large
- L’inscription d’un volet « référentiel commun » au niveau de la mise en œuvre du SNIE
- L’initiative du SEMIDE à l’échelle de la Méditerranée, leur retour d’expérience et leur accompagnement tout au long du processus sont un atout important.
- Une réelle prise de conscience des enjeux en matière de données sur l’eau dans les institutions investies dans le domaine de l’eau et un niveau de technicité relativement bien partagé à tous les niveaux.
- Les initiatives régionales Tunisie comme expériences de mise en œuvre
4.10.1.4. **Menaces**

- L’étalement de la phase préalable de conception du SNIE qui donne le sentiment aux partenaires de ne plus être impliqués dans le processus et qui peut conduire à une adhésion limitée par la suite
- Il n’existe pas de schéma national des données sur l’eau au niveau du Maroc (même si les prérogatives dédiées aux ABH sont claires).

4.10.2. **Les points d’attention et recommandations**

A travers ces analyses, nous listons les recommandations et points d’attention suivants :

- Lancer la refonte de BADRE 21 pour pérenniser la banque de données nationale sur les ressources en eau.
- Entreprendre une analyse des données historiques au niveau de BADRE 21 lors de la refonte et instaurer des processus d’échange dématérialisés.
- A travers le SNIEau, initialiser une démarche sur les référentiels communs de l’eau (codification de paramètres, référentiels géographiques, processus de validation des données, cadre des échanges standards etc...). Il s’agira de capitaliser sur les référentiels issus de BADRE 21 (et sa refonte) dans un premier temps et d’étendre ce référentiel en intégrant les référentiels existants au niveau des SI SPRE, Qualité des eaux et SIG irrigation.
- A travers le SNIEau, initier des trames d’échange standard spécifiques adapté à la refonte de BADRE 21 et élargi à SPRE, Qualité des eaux et SIG irrigation.
- Mettre BADRE 21, SPRE et Qualité des eaux au cœur du SNIEau en termes de « Banque de données nationale de référence ».
- Instaurer des règles en matière de développement de SIeau et d’échange de données pour rendre compatibles les développements ultérieurs avec le référentiel commun établi et organiser la concertation avec l’ensemble des acteurs concernés par des développements éventuels.
- Réaliser une étude visant à établir un schéma directeur des données sur l’eau qui fixe les responsabilités (Gouvernance) en matière de collecte de données et de garantie de maintien des référentiels (notamment géographiques). Intégrer l’ensemble des acteurs du secteur de l’eau ainsi que l’ANCFCC et le CRTS dans la démarche. Ce schéma doit intégrer l’ensemble des composantes (métiers et infrastructure SI) et doit se rendre compatible avec le Schéma Directeur des Systèmes d’Information de la DOSI.
- Organiser des sessions d’échange avec les institutions régionales et françaises en charge d’administrer les SIEau nationaux (notamment ONEMA en France - en charge de l’administration des bases de données nationales sur l’eau- et le SANDRE -entité en charge de l’administration et la diffusion du référentiel commun en France-).

4.10.3. **Bilan global**

Notre analyse nous conduit à montrer que l’écosystème SI semble relativement robuste au niveau du Maroc. Le problème majeur que nous identifions est surtout que le manque de cadre d’interopérabilité entre les SI ABH et le niveau central peut conduire à des développements d’applications « opportunistes » ne permettant pas de s’inscrire dans un dialogue avec d’autres SI. Aussi il est fondamental de mettre en place un référentiel commun et des standards d’échanges pour au moins garantir qu’une donnée issue d’une base de données sera compatible et lisible par un système tiers, y compris national. Actuellement, pour garantir l’interopérabilité entre les ABH et le niveau central, des « duplicats » des SI sont réalisés. Ceci implique qu’un développement spécifique initié par le niveau central doit être ensuite déployé sur l’ensemble des ABH. Les ABH ne peuvent pas développer de nouveaux modules sur ce duplicat (sous peine de perdre l’interopérabilité) alors même que les ABH peuvent avoir des besoins plus larges. En conséquence, les ABH sont amenés à développer des SI « parallèles » qui perturbent un peu plus la fluidité des échanges. De notre point de vue il sera plus judicieux de diffuser des « standards d’échange » (ou trames de fichiers pivots) avec des règles de nomenclature. Cette option offre la possibilité à chaque ABH et au niveau central de réaliser les développements qu’il souhaite sur ses applications, le plus important étant de garantir qu’un fichier
Standard d’échange peut être produit par l’application et lu pour intégration. Par exemple, en proposant un fichier standard d’échange sur les forages, en en proposant la structure, les nomenclatures, les champs obligatoires et le format (xml ou autre) et en s’assurant que l’ensemble des SI partenaires sont en capacité de le lire et de le produire, alors la fluidification des échanges s’en trouve accrue et l’on s’assure que l’ensemble des SI, quels que soient leurs développements, s’ils sont capable de lire et produire ce fichier, sont rendus compatibles avec une nomenclature « nationale ». Même s’il est important de pouvoir produire des informations agrégées de manière « simple » à l’échelle nationale, nous pensons qu’il faut d’ores et déjà initialiser un référentiel commun au niveau national pour renforcer les banques de données nationales du Maroc et pérenniser les flux de données. Il conviendra d’être attentif à la gouvernance en matière de référentiel commun - qui administre et gère ces référentiels communs et comment s’établissent les flux pour leur mise à jour, leur maintien et leur diffusion.
5. SYNTHESE DE L’ANALYSE CONDUITE À L’ECHELLE DES 3 PAYS

Dans ce chapitre nous tenterons une analyse comparative globale sur l’état des lieux des SI que nous avons pu mener durant le projet.

5.1. Analyse SWOT de synthèse

L’analyse SWOT de synthèse à l’échelle des 3 pays reste volontairement large et tente de souligner les éléments structurants à l’échelle des 3 pays.

5.1.1. Les Forces

- Un socle de compétence très fort en matière de monitoring de la ressource en eau
- Une adhésion forte autour des outils techniques SIG et bases de données
- Un bon niveau de formation en général sur les outils techniques
- Des Directions de SI compétentes à l’échelle nationale
- Des processus de mise en œuvre de plateformes nationale sur l’eau initiés avec prise en compte des aspects « gouvernances » en parallèle des aspects « techniques ».
- Homogénéité des choix techniques au niveau de chaque pays.

5.1.2. Faiblesses

- Le manque de coordination et de concertation dans les développements effectués entre le niveau central et le niveau régional ou déconcentré.
- L’absence de cadre d’interopérabilité au niveau de chaque pays et le développement des outils SI de centralisation de l’information
- Des processus de collecte sur le terrain « fragilisés » par des moyens (techniques et humains) parfois sous dimensionnés ou inadaptés (accès internet, SI « obsolètes » au niveau local etc.)
- Peu d’indicateurs sur la centralisation de l’information à l’échelon national.
- Des processus d’accès aux données « lourds » (demande papier, signatures, protocoles d’échanges bilatéraux etc.)

5.1.3. Opportunités

- L’implication de l’OSS et de la GIZ sur les questions liées aux SI en général
- La tendance de fond portant les SI nationaux sur l’eau au niveau de la Méditerranée (SEMIDE) et de l’Union Européenne (retour d’expérience du SANDRE, etc.)
- L’existence et la démocratisation mondiale de « protocole d’échange standard » pour l’ensemble des données (Json, xml, wms etc.)
- Attentes fortes de l’ensemble des partenaires sur l’émergence d’une plateforme nationale des données sur l’eau et sur la facilitation des échanges

5.1.4. Menaces

- Le frein dans la publication des données de base et dans les échanges intra et inter institutions
- La non « maitrise » et le non-cadrage d’un référentiel commun peut entrainer un foisonnement d’outils qui ne pourront pas communiquer entre eux par la suite.
5.2. Les points d’attention et recommandations

- Initialiser les cadres d’interopérabilité au niveau de chaque pays, s’appuyer sur le retour d’expérience initié en Tunisie et accompagner ce processus à l’échelle du Maghreb en instituant une coordination régionale. S’appuyer sur des organismes internationaux pour accompagner le processus.
- Avancer dans la mise en œuvre de plateformes SI nationales de l’eau en intégrant des indicateurs d’alimentation et de performance.
- Veiller à créer une division spécifique ou un organisme spécifique, en charge de l’administration du référentiel commun et en charge de maintenir le SI national de l’eau du point de vue technique, méthodologique et data management. Cette division doit être composée d’expertise métier, d’experts en matière de SGBD (modélisation conceptuelle, modélisation physique, scénario d’échanges etc.) et d’expertise en matière infrastructure SI.
- Veiller à la mise en place et à la pérennisation d’une structure de pilotage du Système national sur l’eau en charge d’orienter les actions prioritaires à mener sur le SI National de l’eau (bases de données prioritaires à refondre, données et indicateurs à diffuser etc.). Veiller à intégrer l’ensemble des institutions partenaires.
- Créer des comités techniques (métiers, SI, Bases de données etc...) subordonnés à la structure de pilotage pour échanger et faciliter la décision sur les orientations à prendre.
- Réaliser un schéma national des données sur l’eau à l’échelle de chaque pays pour identifier clairement les rôles et moyens à mettre en œuvre pour pérenniser les processus de collecte, centralisation et diffusion de l’information. Identifier à ce moment-là, la structure en charge d’administrer la plateforme nationale.
- Favoriser les échanges internationaux à travers des sessions de travail régulières entre pays du Maghreb, voire méditerranéens, afin de promouvoir les bonnes pratiques en matière de SI Eau.
- Privilégier l’ouverture des données vers un large public en s’appuyant sur les standards de diffusion.
- Veiller à intégrer le coût d’acquisition des données et, si les orientations de paiement des données sont prises, afficher une politique tarifaire claire.
- Formaliser et diffuser des processus de qualification (critères de conformité etc.) et associer une qualité de la donnée à chaque donnée (fiable, douteuse, non fiable etc...). Veiller au caractère reproductible du processus afin qu’il puisse être reproduit dans l’ensemble des SI développés par la suite (diffusion des bonnes pratiques en matière de contrôle d’une information donnée)
- Maintenir une bibliographie spécifique aux SI à l’échelle des 3 pays afin de conserver la traçabilité.

5.3. Synthèse globale

Nous retiendrons avant tout que les grands enjeux de GIRE sont clairement communs à l’échelle des 3 pays du Maghreb et une place conséquente est faite au stockage de l’eau dans les barrages ainsi qu’à la livraison d’eau vers les périmètres irrigués. La sémantique globale est d’ailleurs la même pour désigner ces grands enjeux. Le monitoring de la ressource en eau est donc un élément structurant pour l’ensemble des 3 pays et l’on peut dire que chacun des 3 pays, même si des améliorations sont sans doute souhaitables, possède un socle de compétence fort sur ces sujets.

D’un point de vue « SI national sur l’eau », nous retiendrons que la Tunisie et le Maroc ont clairement identifié un « Système National d’information sur l’eau » dont les schémas sont par ailleurs assez proches bien que leur mise en place technique n’en est pas encore au même stade. L’Algérie n’a pas réellement commencé
la mise en œuvre d’un Système National d’information sur l’eau bien que l’ensemble des fondements semblent être initiés.

La Tunisie s’est emparée de la problématique SI national sur l’eau en commençant à fédérer des « banques Nationales de données sur la ressource en eau ». Le Maroc se donne également cette ambition. En Algérie, les bases nationales sont identifiées mais aucun signal fort sur la refonte de ces bases et leur intégration globale n’est à ce jour donné.

Sans rentrer dans les détails et les choix techniques de chaque SI, il est clair que l’ensemble des institutions au niveau d’un même pays ne sont pas au même stade de maturité. Il coexiste actuellement des systèmes que nous pourrions qualifier d’obsolètes avec des systèmes très professionnels. Néanmoins, les besoins en SI sont partagés par tous et tout le monde réclame l’accès à une information mise à jour et fiable. Toutes les institutions réclament un SI « professionnel » et toutes les institutions ayant initié ou achevé cette étape, considèrent cela comme un atout fort et une avancée leur permettant de mieux répondre à leur mission. Notons que la tendance full web est une constante au niveau des 3 pays.

Le point commun reste la prise en compte très faible à ce stade de la notion de « référentiels communs » et d’interopérabilité. La Tunisie a néanmoins entamé un processus fort en ce sens alors que l’Algérie et le Maroc ne semblent avoir encore tout à fait pris ce sujet en compte. Rappelons quand même que l’Algérie, à travers une initiative de la DISI, a identifié cette question.

Enfin, l’arrivée des technologies de monitoring en continu semble « perturber » un peu la donne vis-à-vis des schémas classiques de remontée de l’information. La plupart du temps, ces SI sont déconnectés des autres SI et le « mélange » des données avec des données de monitoring plus classiques reste difficile. De notre point de vue, l’absence de la définition d’un cadre commun d’interopérabilité se fait encore plus sentir sur ce volet.
Annexes A

Compte-rendu des entretiens menés durant les missions en Tunisie
La mission en Tunisie s’est déroulée du Lundi 16 Mai 2016 au Lundi 24 Mai 2016 en présence des 2 experts internationaux Victor Essayan & Axel Aurouet. Mr Mohammed Ben Sakka, GIZ, a participé à l’ensemble des entretiens.

<table>
<thead>
<tr>
<th>Lundi 16 Mai 2016</th>
<th>Mr SLIMANI – consultant projet CREM-BGR auteur de l’étude sur « Inventaire des systèmes d’information existants dans le domaine de l’eau en Tunisie »</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Confirmation qu’un projet visant l’inventaire des systèmes d’information existants dans le domaine de l’eau en Tunisie a été engagé dans le cadre du projet CREM. La majeure partie des institutions &amp; organismes tunisiens ont été rencontrés afin d’établir cet état des lieux. L’analyse produite au niveau de cette étude intègre des méthodologies SWOT / PESTEL / PORTER. Cet entretien permet de délimiter le périmètre global du SINEAU (Système d’Information National sur l’Eau : méta-système fédérant plusieurs bases de données du secteur de l’eau) et d’établir une première cartographie des acteurs contributifs. Il ressort que le SINEAU est actuellement constitué d’un nucléus autour de la base de données SYGREAU (MARH/DGRE), de la base de données COPEAU (MEDD/ANPE) et de la base de données SISOL (MARH/DGACTA). La réalisation du SINEAU est confiée à la société ST2I. il ressort qu’il n’y a pas de fluidité des échanges de données entre les acteurs. Il existe un Comité SINEAU qui « chapeaute » la mise en œuvre du SINEAU et qui s’apparente à un comité de pilotage du projet. La mission de centralisation du SINEAU est confiée au BIRH (Bureau d’Inventaire des Ressources Hydraulique). Les discussions portent sur le SYGREAU, COPEAU &amp; SISOL qui semblent être des bases de données type ACCESS (cette observation sera infirmée lors des rencontres et des recoupements ultérieurs). Les acteurs possédant des données et/ou bases de données dans le domaine de l’eau sont abordés. Sont répertoriés (en plus de SYGREAU / COPEAU &amp; SISOL à la DGRE et à la DGACTA) : LA SONEDE (Distribution de l’eau potable), les AIC devenues (Groupement de développement agricoles), la SECADENORD (transferts d’eau de barrages), l’APAL (Données sur le Littoral), l’ONAS (Réseau d’Assainissement), Le Ministère de la Santé publique (DHMPE), le ministère de la défense (production de l’information spatiale de référence – CNCT), l’Institut national de la statistique (INS – En charge des données de recensement de population), l’Office du Thermalisme (Ministère du Tourisme). Au niveau des producteurs de données sur la qualité des eaux, plusieurs laboratoires nationaux d’analyse sont répertoriés : le CERTE (Centre d’Etude et de Recherche sur les techniques de l’Eau), la DGRE qui possède son propre laboratoire dans lesquels les CRDA envoi leurs échantillons, le CRDA envoi leurs échantillons, l’INAT (Institut National d’Agronomie…) et le Ministère de la Santé publique (DHMPE – Direction de l’Hygiène, des Milieux et de la Protection de l’Environnement). D’autre partenaires sont cités tels que l’Institut de Recherche des Zones Arides. Une base de données GEORE (Gestion Optimale des ouvrages de Rétention d’Eau) a été produite dans le cadre d’un projet GIZ. Cette base de données (probablement SIG avec attributs) est normalement disponible à la DGBGTH. Le rapport final de cette étude a été transmis par le BGR et le projet CREM aux consultants. Document de référence consulté : Etude sur « Inventaire des systèmes d'information existants dans le domaine de l'eau en Tunisie. CREM BGR-projet: la coopération régionale pour la gestion durable des ressources en eau dans le Maghreb (OSS-BGR-GIZ) Numéro du projet: 2013.2289.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lundi 16 Mai 2016 et Lundi 23 Mai 2016</th>
<th>Mr Mohammed Ben Sakka – Partenaire GIZ au Ministère des ressources en eau et membre du Comité scientifique du SINEAU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Le projet GEORE a été initié sur la base d’un programme EAU 2000 démarré vers 1995. Le projet GEORE devait être intégrateur et a dérivé vers un objet purement technique. Le projet GEORE couvrait 3 composantes ; la Carte Agricole (composante SIG de GEORE), un modèle de qualité des eaux et une analyse prospective sur la population et les changements climatiques. La carte agricole est une donnée référentielle établie sur la base d’une analyse d’images satellite SPOT. Cette information reste sous-utilisée, pour ne pas dire non-utilisée actuellement. Le projet CREM est un projet dont la vocation est la remise à jour de cette carte agricole à l’échelle de la Tunisie. Il est fait mention de l’existence d’un SIG au sein de la DG Forêt. Le BPEH a été créé en 2003. Le projet GEORE est resté un outil spécifique fortement utile pour la direction des barrages.</td>
</tr>
</tbody>
</table>
Le projet GEORE a laissé la place au projet AERE qui n’a également pas honoré l’ensemble de ses engagements vis-à-vis des objectifs : extrait du diaporama de Mr Ben Sakka « L’objectif de l’AERE : assurer un développement sectoriel durable articulé autour d’un plan directeur mettant tous les secteurs usagers de l’eau en interface et intégrant les outils nécessaires pour cela.

Indicateur 1 : Le BPEH dispose de toutes les données de base nécessaires pour élaborer une Planification Cadre des ressources en eau et une planification des investissements, et ce à moyen et long terme.

Indicateur 2 : Le BPEH dispose d’un Système de calcul du Bilan Hydraulique avec lequel il élabore des données de planification actualisées chaque année pour le développement à moyen et long terme des ressources en eau (publication de Bilans Hydrauliques). »

Lors de cet entretien il apparait que le « concept » de contrôle et de suivi n’est pas assimilé dans l’ensemble des secteurs. Aussi les plans quinquennaux ne bénéficient pas d’indicateurs de suivi ou de gouvernance qui permettent de mesurer l’efficience des travaux réellement menés ou engagés.

Mercredi 18 Mai 2016
Mr Mohammed Lotfi Nacef (Directeur du Bureau d’Inventaire des Ressources Hydrauliques – BIRH/DGRE)
Mr Abdel Jabar Choura (BIRH)

Le BIRH est l’entité administrative désignée pour administrer le SINEAU Tunisien. Le BIRH est sous la responsabilité technique de la DGRE (Mr Lotfi Frigui). À ce titre le BIRH est impliqué depuis le départ dans le projet SINEAU et Mr Lotfi Nacef fait partie du Comité SINEAU (comité de pilotage en charge du suivi du projet) et du comité scientifique. Il est important de noter que le BIRH est une entité en charge de collecter la redevance sur la ressource en eau et possède donc son autonomie financière. Cette redevance est collectée et gérée au niveau du BIRH, ce qui lui permet de planifier des acquisitions matérielles ou de maintenance (Achat de matériel de mesures, matériel informatique, redistribution éventuelle aux arrondissements). Actuellement, le BIRH a à sa disposition 1 informaticien mis à disposition de la Cellule SINEAU. Cette cellule est en fait un partage entre différentes personnes issues des administrations en charge du SINEAU. Cette
La Cellule est composée d’une quinzaine de personnes avec 3 informaticiens (point focaux des bases partenaires actuelles – SYGREAU – COPEAU – SISOL) et des « administrateurs » ou « point focaux techniques » pour le SINEAU. Ces derniers sont plutôt en charge d’alimenter le SINEAU ou ses bases corolaires. Le comité SINEAU joue un rôle de pilotage alors que la Cellule SINEAU joue un rôle plus technique. Le SINEAU est donc composé dans son nucleus de 3 bases de données (SYGREAU, COPEAU & SISOL). Le SINEAU est dimensionné comme un système qui ne stockera pas les données des bases de données partenaires mais permettra un « lien » vers ces bases de données à travers un portail Web permettant la « mise en réseau » des différentes bases de données. Le SINEAU est développé par un consortium de Bureau d’Etude (ST2I, AECOM, Medianet) qui est également en charge de développer / refondre les applications partenaires (SYGREAU, SISOL et COPEAU) dans le cadre du même marché. Le marché a été attribué pour un montant proche de 2M de DT en Février 2013 pour un démarrage en Mars 2013. Dans son objet, le SINEAU est donc en charge de stocker « le référentiel commun » qui doit contenir l’ensemble des informations communes aux différentes bases de données (Réseau hydrographique, réseau routier, stations de mesures etc...) ainsi que les indicateurs de gestion des eaux (quantité / qualité...). Le SINEAU ne diffusera pas (a priori) d’indicateurs de performance du SINEAU sur la remontée des informations. Le socle technique du SINEAU sera une base de données PostGres/PostGIS. COPEAU et SISOL sont développés sur le même socle alors que SYGREAU est développé sur un socle ORACLE pour des raisons historiques. Actuellement la Vérification d’Aptitude de Bon Fonctionnement est réalisée pour les 3 sous-systèmes du SINEAU et est en cours pour le SINEAU lui-même. Du point de vue de l’acquisition des données sur site, pour SYGREAU, il existe un réseau de stations automatisées via le Système SYCOHTRAC. Ce système semble toutefois souffrir d’une difficulté de remonté de l’information. Il n’y a actuellement pas de connexion entre SYCOHTRAC et le SYGREAU. La remontée des informations vers le SYGREAU et les autres bases de données est effectuée par les CRDA (niveau régional – arrondissements) qui collectent et font remonter l’information sous forme papier / mail. Actuellement il n’y a pas de processus fort de validation de la donnée et la validation n’est pas très robuste ». Les bases de données COPEAU & SISOL semblent faire l’objet de vérifications plus poussées avant intégration et au moment de l’intégration dans le système. D’un point de vue global le SINEAU est attendu comme un système permettant de palier à la disparité des sources de données. L’accueil vis-à-vis du SINEAU est enthousiaste. Le système SINEAU doit être hébergé (est actuellement hébergé ?) au niveau de l’IRESA (Institut de Recherche et d’Enseignement Supérieur en Agriculture).

Figure 46 : Architecture de SYCOHTRAC

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>La DGRE est en charge du système SYGREAU dont la principale vocation est la publication d’annuaires sur les ressources en eau. ces annuaires sont par ailleurs l’objectif principal de la DGRE et la composante SYGREAU en est le pilier. Ces annuaires sont actuellement produits manuellement. Le SINEAU a été financé dans le</td>
<td></td>
</tr>
</tbody>
</table>
La direction du suivi des milieux environnementaux est en charge du suivi de la qualité de l’eau et de l’air. Cette direction fait partie de l’ANPE (Agence Nationale de Protection de l’Environnement) elle-même intégrée au Ministère de l’Environnement et du Développement durable. Les mesures produites par cette direction reposent sur de la physico-chimie et quelques mesures de niveau en plus d’un réseau de capteurs de l’air. Un point de vue global de la DGRE s’occupe du suivi de la qualité uniquement dans un but agricole alors que l’ANPE s’occupe du suivi avec une vocation écologique. A ce titre elle possède un réseau de surveillance de la qualité des mesures. Ce réseau, et les points de mesure qui le composent, est positionné sur les sites « à risques ». Ces sites ont été définis dans la cadre du programme PISEAU II. Cette étude a réalisé un inventaire des sources de pollution ainsi qu’une étude de vulnérabilité pour définir la localisation précise des sites de mesures. Le réseau de surveillance a commencé en 2004 et est composé d’environ 350 points de mesure. Actuellement des guides de bonne pratique sont diffusés pour les techniques de prélèvement et d’analyse (programme Life en partenariat avec la Belgique). L’ensemble des mesures est réalisé directement par l’ANPE basée à Tunis (laboratoire mobile & fixe), à l’exception de la direction régionale de Sousse qui possède ses propres moyens (techniciens et laboratoire mobile). L’ensemble des échantillons est ensuite transmis au laboratoire Centrale d’Analyse et d’Essai (LCAE) et au CITET (Centre International des Techniques de Tunis). Les mesures sont effectuées à fréquence 1 à 2 fois par an (suivant les eaux de surface ou souterraines). À terme 7 stations de mesure automatisées devraient être installées pour permettre des mesures de physico-chimie et de débit. Les points du réseau de mesure sont étudiés au regard des points du réseau de la DGRE et certaines stations sont reprises pour le suivi. Toutes les stations sont codifiées par l’ANPE et il n’y a pas de partage de codification. Les recoupements sont effectués à l’aide des relevés GPS à posteriori. Aujourd’hui la Base de données COPEAU est en réalité une série de feuille Excel stockant les résultats issus des mesures effectués par les laboratoires. Les données sont ressaisies dans une feuille standard. Le développement d’une application COPEAU avec un moteur de base de données est actuellement intégré dans le développement du SINEAU. Cette application est actuellement en phase de test et son déploiement est prévu pour 2016. En façade, le SINEAU se matérialisera par un portail web. Tous les réseaux et toutes les données sont sous la responsabilité de la DGRE. Le système SYCOHTRAC est un système permettant la remontée automatique de l’information hydrologique sur quelques stations de mesures et en temps réel. Cette base n’est pas connectée directement au système SYGREAU bien que centralisée à la DGRE. Ces données sont « validées » par des mesures ponctuelles effectuées sur les stations instrumentées. En ce qui concerne les eaux souterraines, les données sont entièrement collectées au niveau des CRDA et il n’existe pas de mesures télé-gérées. Les données sont saisies dans le SYGREAU. Les mesures sont effectuées 2 fois par an pour les eaux souterraines. Pour les eaux de surface, les données sont acquises à des pas de temps différents suivant les CRDA avec une fréquence accrue pendant les épisodes de crue. Enfin il existe des mesures qui sont opérées pour les données météorologiques et climatiques. Ces données climatiques sont acquises sur la base des standards (Guide) de l’Organisation Mondiale de la Météorologie (OMM). Il existe des logiciels tiers utilisés au niveau des CRDA pour l’analyse des données hydrologiques et piézométrique. On retrouve HEC-RAS, HYDROM, PLUVIOM & HYDRACCESS. Il existe des prélèvements pour l’analyse de la qualité des eaux. Ces prélèvements sont effectués par les CRDA et les analyses sont réalisées au niveau central de la DGRE par leur laboratoire. Il y a actuellement 3 informaticiens au niveau de la DGRE qui sont plutôt en charge des aspects « réseaux et infrastructures » sans être impliqués réellement dans la maintenance applicative et le développement des systèmes. Il y a également 4 à 5 personnes en charge de la gestion de l’information dans la base de données SYGREAU et de la publication des annuaires.

---

Il existe des problèmes de connexion entre le régional et le national. Le CNCT (Centre National de Cartographie et de Télédétection) a un projet GeoNat. Il n’existe pas de carte géologique à l’échelle de la Tunisie. Comme pour les nouvelles applications du SINEAU, l’application SISOL est une application basée sur PostGres / PostGIS avec possibilité d’entrer par QGIS Desktop ou par le Web. La saisie se fait uniquement sur la base de formulaires pré-établis. Il n’y aura qu’une seule base centralisée avec un accès par portail Web au niveau de chaque CRDA qui possèdera son propre code d’accès, limité à sa zone géographique. Des indicateurs pour le SINEAU ont été spécifiés et seront implémentés dans SISOL et le SINEAU.

**Base de données des lacs collinaires (anciennement base CES – conservation des Sols).** Il existe différentes nomenclatures pour les aspects « retenue ». La base de données de la DGACTA concerne les lacs collinaires généralement inférieurs à 100 à 200 000 m³. Les autres retenues collinaires ne sont pas gérées et les grands réservoirs font l’objet d’un suivi à part par la DGBGTH. Aujourd’hui environ 856 lacs collinaires sont stockés dans cette base de données ArcView. Le géo-référencement de ces lacs collinaires est effectué sur la base du système de projection UTM 32 Nord, Ellipsoïde Carthage. De nouveaux lacs sont créés chaque année et un état d’avancement est suivi au niveau de la base de données. Il existe un suivi de l’envasement de ces lacs qui est effectué lors de campagne ponctuelles. Dans cette base est également stocké l’ensemble des informations d’exploitation (type de culture, superficie, équipements...) lorsque ces lacs sont destinés à l’exploitation. Toutes ces informations sont stockées dans des fichiers Shapefile qui peuvent être intégrés en l’état dans le SINEAU. Des données de niveau sont collectées tous les 6 mois environ. Actuellement il existe un projet CRETE (Cartographie des Ressources en Eau de la Tunisie) portée par la DGRE. D’un point de vue institutionnel, il existe un Comité National de l’Eau (niveau du premier ministère) et le comité SINEAU (sous composante). Actuellement une étude institutionnelle doit cadrer le rôle de chacune des institutions au niveau du SINEAU.

---

**Vue générale Système d'information sur les ressources en eau et en sol**

<table>
<thead>
<tr>
<th>NIVEAU NATIONAL</th>
<th>SINEAU</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYGREAU</td>
<td>COPEAU</td>
</tr>
<tr>
<td>SOLS</td>
<td>.....</td>
</tr>
</tbody>
</table>

**LEGENDENIVEAU NATIONAL**

- Fourniture de données
- Consultation

---

**Jeudi 19 Mai 2016**

Ridah Beji – Directeur du CRDA de Kairouan.

Actuellement le CRDA de Kairouan passe par le logiciel HYDRACCESS pour la saisie des informations liées à la l’hydrométrie et à la pluviométrie. Hydraccess repose sur une base de données de type ACCESS. Ce logiciel est utilisé en lieu et place des systèmes Pluviom & Hydrom eux aussi développés par l’IRD en son temps. Les moyens matériels à disposition permettent des jaugeages au SAUMON et au micro-moulinet pour les eaux de surface et des mesures de niveau pour les eaux souterraines. Des manques de moyens sont soulevés pour le
maintien de ses équipements. Il y a des équipements pour de l’acquisition automatique mais avec des problématiques de vandalisme sur les ouvrages. Les manques de moyens financiers impactent directement la tournée de mesure. La fréquence de mesure semble dépendre de chaque CRDA. Aux vues de moyens à disposition seules 2 mesures annuelles sont effectuées (hautes eaux/basses eaux). Il existe des limnigraphes métalliques qui sont installés. Il semble y avoir des problèmes de véhicule pour les tournées de mesures. Les courbes de tarages sont refaites à chaque tournée de mesures puis sont transmises à Tunis (DGRE). Les mesures faites en standard sont le débit, la piézométrie et la qualité des eaux (Résidus à sec & Nitrates). Il existe des documents de procédure écrits mais la plupart de la transmission des bonnes pratiques est effectuée de manière orale. L’information est actuellement saisie sur papier puis sous format EXCEL. Il n’existe pas de « fiche de prélèvement ou de mesure » type permettant une standardisation à la base de la collecte de la donnée. Les stations sont néanmoins codifiées en accord avec les standards internationaux. Les informations sont ensuite envoyées vers la DGRE par mail & CD Rom. Les informations sont également saisies dans HYDRACCESS et une « moulinette » semble avoir été créée pour préparer les données et les intégrer dans le SYGREAU (double-saisie des informations potentiellement). A priori il y a des « bugs » dans l’application SYGREAU (ancienne version) au niveau des eaux souterraines. L’application SYGREAU est en cours de refonte avec un accès par portail web et une base ORACLE en back office. Il y a eu des formations sur ce nouvel outil mais qui ne semblent pas suffisantes. Par ailleurs, cette application est perçue comme une « complexification des procédures de remontée de l’information » et donc comme un « frein » dans le circuit de l’information (obstacle au changement ou réalité ?). Par ailleurs depuis 3 ans la connexion internet est déficiente voire absente pour le CRDA de Kairouan. Ce point constitue un point de vigilance important dans le circuit de l’information, sa maintenabilité et sa soutenabilité. Enfin il est important de noter que d’un CRDA à l’autre, une même nappe d’eau souterraine peut avoir un nom différent suivant le CRDA. Le projet CRET (Cartographie numérique des Ressources en Eau de la Tunisie) devrait répondre à l’harmonisation des référentiels. D’un point de vue général, il est fait mention par le CRDA de Kairouan de la nécessité de créer une administration technique en charge de la mesure à part de l’administration technique actuelle dont les missions sont trop diverses pour être en capacité d’absorber l’ensemble des tâches à réaliser (autorisation, mesures…). Il est fait mention de l’aggravation de cette situation par les projets de coopération qui demande encore plus d’investissement avec un périmètre de moyens humains limités (notamment manque de techniciens). Par ailleurs, il y a un sentiment de mise à l’écart du niveau régional dans le processus global. Le SINEAU n’est pas perçu comme présentant un quelconque avantage dans la réalité quotidienne du CRDA. Le risque du maintien d’une « spécula­tion » sur la donnée est fortement ressenti.
La SECADENORD ne possède pas de SI à proprement parler. Elle achète l’eau des barrages et est un fournisseur de volume d’eau potable pour la SONEDE. Elle dessert aussi les groupements d’intérêts collectifs (GIC) qui relèvent de la DGGREE. Au départ sa mission était essentiellement à vocation de distribution pour les agrumes mais sa mission a aujourd’hui largement dérivé vers la desserte d’eau pour la SONEDE. Le suivi quotidien des barrages est effectué par la DGBGTH (lâchures notamment) qui transmet ses informations vers la SECADENORD sous format PDF. Des CRDA ont des stations de pompages pour le prélèvement d’eau. La SECADENORD doit respecter des objectifs de qualité notamment en matière de salinité (< 0.5 g/l) mais également en matière de quantité délivrée auprès de la SONEDE. Des mesures régulières de qualité sont donc réalisées par la SECADENORD sur la salinité avec un matériel de mesure de terrain (sonde de salinité / conductivité). Les données sont transmises au pas de temps horaire par voie téléphonique et sont ensuite re saisies dans un fichier Excel. Des mesures de turbidité sont également réalisées de manière journalière avec un accroissement de la fréquence de mesure en cas de crue. Chaque prise d’eau est instrumentée avec un débitmètre électromagnétique (13 prises) et font l’objet de relevé fréquents. Il existe une cartographie des prises d’eau et des réseaux qui a été réalisée dans le cadre du projet GEORE. Il n’y a pas de sauvegarde de ces informations sur un serveur. L’infrastructure technique n’existe pas à la SECADENORD, les informations sont stockées sur des ordinateurs personnels. Il n’existe pas de guide ou de protocole de mesure pour les analyses. Un projet de la KfW visait la télégestion du Canal avec des difficultés de mise en place notamment à cause de compatibilité entre les puces installées et le réseau GSM existant. Le système est actuellement abandonné. La SECADENORD n’est actuellement pas investie directement dans le projet SINEAU mais une rencontre avec le bureau d’étude ST2I a eu lieu. La SECADENORD devrait s’intégrer dans une seconde tranche du Projet SINEAU. A priori des documents s’apparentant à des spécifications fonctionnelles générales sont en cours d’élaboration (juin 216).
La Direction Générale des Barrages et des Grands Travaux Hydrauliques a en charge d’élaborer les études hydrauliques, de maîtrise des eaux de surface, de mobilisation des eaux, d’élaborer les études de grands ouvrages hydrauliques de mobilisation des eaux de surface et de réaliser les grands barrages, barrages collinaires et les grands aménagements hydrauliques. Dans le cadre de ses activités, la DGBGTH suit régulièrement la qualité des eaux des barrages ainsi que les niveaux et les volumes délivrés. Une base de données recensant les ouvrages de stockage est disponible et a été constituée à travers le projet GEORE. Les analyses qualité, quantité (niveau) et les mesures bathymétriques (envasement des barrages) sont effectuées de manière quotidienne. Il existe une direction spécialisée dans l’acquisition de ces informations. Les informations sont transmises par téléphone et sont transmises à la direction de l’exploitation. Il n’a pas été possible de voir le système de centralisation disponible au sein de la DGBGTH. Il semble qu’il n’y ait pas de SI à proprement parler (entretiens Mr Missaoui).
Annexes B
Compte rendu des entretiens menés durant les missions en Algérie

| Dimanche 10 et Mardi 12 Juillet 2016 | African Geosystem company Mr Touat Mouloud, Mr Aissani et Mr Bouzida |

Le programme national de l’eau remonte aux années 1980 et visait la constitution d’une base de données historique de l’eau en Algérie. Cette base est actuellement à la MREE/DISI et a été financée dans le cadre du programme EAU II en Algérie. Une déclinaison historique sur les réseaux de mesure gérés par l’ANRH est discutée. L’ANRH est découpée en secteur (environ 25) qui sont différents des secteurs des DRE (Wilayas). Ces secteurs sont des bassins versants et les secteurs se calent grossièrement avec les zonages ABH. Ces 25 secteurs sont également regroupés en 3 grandes zones (Alger, Constantine & Oran). Il y a un service technique au niveau des secteurs ANRH avec un chef de secteur. Du temps de la colonisation le réseau de mesure hydrométrique a été calé sur les standards OMM (Organisation Mondiale de la météorologie) avec un positionnement choisi en fonction de « l’utilité » des sites (barrages, irrigation etc...). Après l’indépendance, ces réseaux étaient sous la tutelle du Ministère des travaux publics (Service des Etudes Scientifiques). Ils étaient suivis dans leur gestion par l’ORSTOM (nouvellement IRD). Dans les années 1970 le réseau a été entièrement repris par un Secrétariat d’État à l’Hydraulique. Le réseau initial était constitué d’environ 400 stations. Aujourd’hui, très peu de stations sont encore fonctionnelles et renvoient de l’information. En ce qui concerne la pluviométrie, 3 institutions sont identifiées comme productrices de l’information sur la météorologie ; l’ONM (essentiellement des stations de mesure au niveau des aéroports, l’ANRH et le ministère de l’agriculture à des fins agro-pédologiques). En plus de la pluviométrie, L’ANRH a quant à elle la charge de collecter l’information de débit sur les cours d’eau, le transport solide et la qualité des cours d’eau (fond géochimique). Il existe également des réseaux de suivi de la qualité des eaux d’un point de vue « impact » et qui concernent des campagnes ponctuelles de mesures visant à caractériser l’impact d’un rejet avant et après remédiation. Au niveau des processus d’acquisition de la donnée de débit, on recense 5 types de stations de mesure. Les stations ne possédant que des échelles limnimétriques (lecture directe), des stations possédant des échelles et des limnigraphes enregistreurs (papier) ; des stations avec échelle, limnigraphie et jaugeurs de type parshall, des stations avec échelle, limnigraphie & téléphérique SAUMON (mesure des vitesses à différents points du profil et intégrale sur la section pour obtenir le débit, stations avec mesure ponctuelles au micro moulinet (petits cours d’eau). Les mesures sont réalisées (étaient ?) 1 à 2 fois par jours en accord avec les standards OMM (relevés de mesures échelle). Les limnigraphes sont relevés régulièrement par les services techniques de l’ANRH et les mesures au SAUMON sont réalisées 4 fois par mois environ afin de permettre les étalonnages de courbes hauteur/débit. Les fréquences de mesure sont plus importantes en période de crue afin de permettre une meilleure caractérisation de la courbe. Les relevés à l’échelle s’appuient sur un dispositif impliquant la société civile et rémunération (information toujours actuelle ?). Ces observateurs de la société civile remplissent un carnet d’observation quotidiennement. Le chef de secteur ou le technicien de l’ANRH collecte ces carnets d’observation pour les centraliser au niveau du secteur. Au niveau du secteur, les données sont exploitées une première fois (limnigraphie enregistreurs, courbes de tarage etc...) avant d’être envoyées vers Alger et le centre ANRH national. Cet envoi se fait de manière papier sous enveloppe avec un rapport produit par le chef de secteur. Pour ce qui concerne la qualité de l’eau, les prélèvements sont effectués par l’ANRH au niveau du secteur. Les échantillons sont envoyés vers des laboratoires de l’ANRH qui se situent soit à Alger, soit à Constantine soit à Oran (suivant le secteur géographique). Une fois les données (qualité, quantité, transport solide & météorologie) reçues au niveau d’Alger, les données sont dispatchées vers les services concernés (Service de la pluviométrie, services hydrométrie, service qualité des eaux et services transport solide). Dans les années 70, les données ont été mises dans une base de données qui semble ne pas avoir été maintenue à ce jour. Dans les années 90, le réseau de qualité des eaux (plutôt orienté sur les eaux usées et les impacts) a été mise en œuvre conjointement entre ANRH et ANBT. A priori il existait une convention entre l’ONM et l’ANRH sur l’échange de données météorologique.

Mercredi 13 Juillet 2016

Une présentation de M. Kettab est réalisée sous forme de PowerPoint pour présenter le contexte des acteurs de l’eau en Algérie.

3 Ministères sont impliqués dans le secteur de l’eau en Algérie. Nous retrouvons :

- Le ministère des Ressources en eau : en charge de la gestion des ressources en eau
- Le ministère de l’agriculture : en charge des questions agricoles
- Le ministère de l’Intérieur : en charge de la distribution en milieu Rural

Le principal acteur reste le Ministère des ressources en eau qui est composé d’un cabinet comportant 7 membres, chacun spécialisé dans 1 secteur précis de la ressource en eau. Aussi nous retrouvons :

- La DMRE (Direction de la Mobilisation des Ressources en Eau),
- Le DEAH (Direction des Études et des Aménagements Hydrauliques),
- La DAEP (Direction de l’Alimentation en Eau Potable),
- La DPAE (Direction de la Planification et des Études Économiques),
- La DAPE (Direction de l’Assainissement et de la Protection de l’Environnement),
- La DHA (Hydraulique Agricole) et la DISI (Informatique & Systèmes d’Information).

Sous tutelle du ministère nous retrouvons des établissements publiaques administratifs dont le principal acteur reste l’ANRH (Agence National des Ressources Hydraulique) qui a, entre autre, la charge du suivi de la ressource en eau (qualité & quantité, eaux de surface et eaux souterraines) ainsi que la charge d’autoriser les forages. Toujours sous tutelle du MREE, nous retrouvons les Établissement Publics à caractère Industriel & Commercial dont les principaux acteurs sont l’ANBT (Agence Nationale des Barrages et Transferts), l’ADE (Algérienne des Eaux) en charge de l’adduction en eau potable, l’ONA (Office National de l’Assainissement) et les ABH (Autorité de Bassin Hydrographique). L’ensemble de ces entités perçoit une redevance ou une taxe qui les place de facto dans ce registre des EPIC. Enfin, nous retrouvons une myriade d’EPE (Établissements Publics à caractère Économique) qui constitue un pool d’entreprises publiques intervenant de près ou de loin dans les études, les aménagements ou la certification dans le domaine de l’eau.

Les ABH ont été créées par la Loi du 26 Août 1996 pour une mise en œuvre opérationnelle à partir de 1999. Plus récemment une agence de coordination a été créée (AGIRE). Outre la mission de collecte d’une Taxe, les ABH ont pour mission principale de :

- Gérer le système d’information à l’échelle des BV hydrographiques,
• Contribuer à l’élaboration, l’évaluation et l’actualisation des plans de développement sectoriels à l’échelle des BV hydrographiques à moyen et long terme,
• Collecter les redevances instituées par la législation et la réglementation en vigueur.

L’AGIRE a pour mission de :
• Réaliser toute enquête, étude ou recherche liées au développement de la GIRE
• Développer et coordonner les Systèmes de gestion intégrée de l’information sur l’eau à l’échelle nationale
• Contribuer à l’élaboration, l’évaluation et l’actualisation des plans de développement sectoriels à l’échelle nationale à moyen et long terme
• Contribuer à la gestion des actions d’incitation à l’économie de l’eau et à la préservation de la qualité des ressources en eau

L’AGIRE effectue la péréquation des budgets de chaque ABH puisque les redevances sont hétérogènes d’une ABH à l’autre. Il est important de noter que l’état peut confier à l’AGIRE la maitrise d’ouvrage déléguée des projets concernant la gestion intégrée de l’eau.

L’ONID a pour mission la conception, l’étude et la réalisation en matière de drainage agricole.

L’Algérienne des Eaux gère (directement ou indirectement) environ 50% des communes en matière d’adduction d’eau avec néanmoins les principales communes. Les 50 autres % sont gérées par les APC. Il est important de noter que des SPA (Société Par Action) ont été créées entre l’ADE et des partenaires étrangers (Français, Espagnol ...) pour certains secteurs géographiques. L’origine en est la sécheresse de 2001 avec des niveaux de barrages presque vides. Pour ne pas avoir à faire face de nouveau à ces épisodes, le gouvernement s’est lancé dans un programme d’équipement d’unités de desalination de l’eau de mer (une 60aine de prévue). Suite à la mise en œuvre de ces stations, des appels d’offre internationaux ont été lancé pour le « Management » et avec comme engagement :
• De l’eau 24/24
• Réduire les fuites de réseau en passant de 70% à 20 %
• S’engager sur 1000 heures de formation

Sur cette base, des SPA sont créées. Ce sont la SEAAL (Algérois), la SEOR (Oran) et la SEACO (Constantine) qui sont en charge du traitement, de la distribution et de la facturation de l’eau potable sur leur secteur. Il devrait y avoir une société équivalente au niveau d’ANABA (confiée à des Allemands) mais le contrat a été rompu pour cause de non-respect des engagements. À noter que le CTH (EPE) a audité la SEAAL sur ses engagements.


Mercredi 13 Juillet 2016
Mr Yalaoui – Sous Directeur des Aménagements hydrauliques au sein de la DEAH

La principale base d’informations disponible pour réaliser ses évaluations est le PNE et le PDARE avec néanmoins des difficultés à actualiser la donnée au sein de ces systèmes. Le desalination de l’eau de mer est un enjeu important. Actuellement 13 stations sont en service pour un volume délivré de l’ordre de 2 Mm3/an. Les organismes ONA, ADE, ONIDE et ANRH sont rappelés comme étant des contributeurs importants du système final. La création des ABH est rappelée ainsi que la création de l’AGIRE comme partenaire important du système global dans la GIRE. Le manque d’informations pour la planification est soulevé dans l’entretien. L’exemple d’un travail de 2 ans sur la nappe de l’Albien est mentionné car il y a eu de réelles difficultés à obtenir de l’information et des données sur la nappe. Il semble que les piézomètres soient suivis régulièrement depuis 10 ans. Des équipements automatisés semblent avoir été mis en œuvre mais ce réseau a périmé (pas d’explication à ce stade). A priori un réseau de suivi existe pour chaque nappe d’Algérie. D’un point de vue global sur les réseaux de mesure de la ressource en eau, seul ¼ des stations semblent actuellement fonctionnelles pour la mesure. Aujourd’hui il y a un réel problème de connaissance sur le volume réellement disponible dans les nappes. Pour obtenir de la donnée, une demande officielle est faite auprès de l’ANRH qui renvoie un CD-ROM avec les données. Il est mentionné que l’on peut faire encore plus en matière de mutualisation entre l’ANRH et l’ANBT. À ce jour il est mentionné que l’ANBT a installé des systèmes pour la gestion dynamique des barrages. Depuis 3 ans les barrages ne sont pas remplis au maximum. Les effets du
changement climatique sont soulevés. M. Yalaoui mentionne le fait qu’il faut moderniser les méthodes de mesures et renforcer les équipements. Le Plan National de l’Eau est donc la base centrale qui constitue la Base de données EAU à l’échelle nationale. Des Termes de référence sont actuellement en cours de constitution pour la remise à jour de cette base de données. Le nom de ce SI serait « BASE EAU » (en aparté nous conseillons de se servir de ces TdRs pour initier un projet d’envergure qui serait « Système National d’Information et d’aide à la décision sur l’Eau »). Le PNE semble être une base ACCESS, de même que les PDARE (en réalité des bases sont sous SQL Server depuis 2013). Les PDARE (Plan Directeur d’Aménagement pour la Ressource en Eau) ont été constituées à l’échelle de chaque ABH et sont nées d’une réflexion en 2002 visant les schémas directeurs pour chaque Wilaya. Le PDARE doit être actualisé tous les 5 ans.

Jeudi 14 Juillet 2016 Mr DERAMCHI Directeur de l’AGIRE

La discussion s’engage sur la naissance des ABH et de l’AGIRE ainsi que leur rôle. Une présentation power point est faite par les consultants pour présenter les enjeux de la mission sur les systèmes d’information. Il est rappelé la création des ABH en 1996 avec une mission autour des SI mais surtout sur la collecte de la redevance. Le fond national de la GIRE est ainsi créé et repose sur une redevance représentant environ 4% du volume prélevé sur le modèle des agences de bassin françaises. Les ABH ont pour missions principales de :

- Gérer le système d’information à l’échelle des BV hydrographiques,
- Contribuer à l’élaboration, l’évaluation et l’actualisation des plans de développement sectoriels à l’échelle des BV hydrographique à moyen et long terme,
- Collecter les redevances instituées par la législation et la réglementation en vigueur.

L’AGIRE, créée plus récemment, a pour missions de :

- Réaliser toute enquête, étude ou recherche liée au développement de la GIRE,
- Développer et coordonner les Systèmes de gestion intégrée de l’information sur l’eau à l’échelle nationale,
- Contribuer à l’élaboration, évaluation et actualisation des plans de développement sectoriels à l’échelle nationale à moyen et long terme
- Contribuer à la gestion des actions d’incitation à l’économie de l’eau et à la préservation de la qualité des ressources en eau

L’aspect « Système d’information » est donc clairement intégré dans les prérogatives de ces organismes. M. le Directeur souligne la difficulté de collecter la donnée. 956 fournisseurs de données / producteurs sont recensés (à toutes les échelles). Très peu d’échanges de données sont opérationnels entre les différents organismes ou structures en charge de la donnée de base (ANRH / ADE / ANRH / ANBT / ONID). Il faut établir un partenariat « gagnant / gagnant » avec les différents producteur de données.

Mardi 19 Juillet 2016 matin ANRH

Mme Belkhir est le point focal du projet CREM à l’ANRH. Les applications BASHYD, BADGE, SIQUEAU (pour laboratoire) sont hébergées à l’ANRH. L’ANRH dispose de quelques capteurs exceptionnels : une trentaine de piézomètres, et 4 sondes conductivité température. Les dérives sont compensées sur ordinateur et les fichiers sont conservés. Il y a des problèmes de matériel. Il s’agit d’un projet pilote avec la Belgique qui concerne la Mitidja. Le réseau piézométrique suit 35 nappes. Les piézomètres sont relevés deux fois par an (hautes eaux / basses eaux). L’ANRH est constituée de 7 directions régionales et de 34 secteurs. Au départ il s’agissait d’hydrologie, l’hydrogéologie a été ajoutée. La collecte des données se fait du secteur, au régional, au central. Chaque département thématique dispose de sa propre BDD Access. Concernant la piézométrie, les données sont remontées du secteur au régional par CD ou disquette après avoir été travaillée sous Piézo2000. Le régional en extrait un fichier Excel contrôlé de visu, qui est remonté au national. Il n’y a pas de banque de donnée centrale. Un tableau de bord a été discuté mais n’est pas abouti. Les logiciels MAPInfo, Surfer, ArcGIS, ArcView sont utilisés. Le système de coordonnées de référence est l’UTM Nord Sahara. L’ANRH dispose de cartes hydrogéologiques, de vulnérabilité, de limites de bassins versants... Les cartes géologiques sont disponibles au ministère des Mines mais sont payantes, le tarif n’est pas clair. L’ANRH vend cartes et données mais ne bénéficie pas du produit de ces ventes. Le site de
l’ANRH présente des données de pluviométrie et de qualité. (Note a posteriori: http://www.anrh.dz, le site propose des tableaux en accès libre qui peuvent être copiés-collés mais pas le téléchargement de fichiers). Les protocoles d’acquisition de données sont transmis oralement. 5 laboratoires sont répartis dans les directions régionales et utilisent SIQUEAU. Les annuaires sont produits par les directions générales à fréquence irrégulière.

Rencontre avec le DG intérimaire de l’ANRH
La DISI échange avec le département informatique de l’ANRH, notamment au sujet d’un SIG commun. Le projet SASS est cité en exemple (comme lors de la réunion précédente).

<table>
<thead>
<tr>
<th>Mardi 19 Juillet 2016, après-midi</th>
<th>ABH AHS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mercredi 20 Juillet 2016</th>
<th>ANBT-DG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arreski Berraki est le DG de l’ANBT (Agence nationale des barrages et transferts) qui dépend du MRE. Les données gérées concernent d’une part les ressources et d’autre part les infrastructures.</td>
<td></td>
</tr>
</tbody>
</table>
Concernant les infrastructures, les données sont collectées et gérées au niveau de chaque barrage. Elles sont archivées au niveau central.

Concernant les ressources, les données sont mises à disposition via géoportail. Elles sont actualisées quotidiennement.

Les priorités sont premièrement la mise en œuvre du SI, deuxièmement le système d’archivage, troisièmement un système dynamique pour la simulation, l’exploitation, et l’interprétation.


Le site est consultable sur : www.barrages-algerie.org/geoportail.php

C’est un géoportail qui diffuse les taux de remplissage, les informations journalières, les transferts. Il propose aussi les tableaux de bord de saisie avec un indicateur rouge si une donnée manque, les données qualité, les seuils d’alerte, les projets d’infrastructure en cours avec les délais d’avancement.

Les données météo de l’ONM sont devenues payantes, une convention est nécessaire.

Le système informatique a été réalisé par une entreprise algérienne. La phase finale, celle du modèle de prévision, n’est pas encore développée, avec un module pour les crues, les pics, etc.

Le portail intègre des monographies sur les barrages. Le SI a été financé par l’ANBT pour un budget restreint, y compris les serveurs. Le logiciel MIKE basin est utilisé pour les simulations, pour l’instant de manière ponctuelle, vers une utilisation systématique. Ce projet s’est arrêté en 2010.

Abdelhamid LATEB est le directeur général de la DISI.

Une étude a été menée sur l’échange de données par canvas avec les DRE de wilayas. La DISI existe depuis novembre 2013. Au préalable, une sous-direction de l’informatique existait à la DEAH. Dès lors un datacenter a été mis en œuvre pour le secteur de l’eau. Les OST (organismes sous tutelle) y ont accès par l’intranet ainsi que les DRE de wilayas. La plateforme a été dimensionnée, y compris en terme d’espace de stockage, pour accueillir toutes les bases de données du secteur. La philosophie est de mutualiser l’infrastructure informatique, ainsi que de permettre les passerelles et le partage de l’information. Pour l’instant il n’y a pas d’exemple de mise en œuvre d’une telle utilisation. Les problèmes de référentiel ont été abordés dans le cadre de « Eau 1 ». Des propositions ont été émises mais non suivies d’effets. Le projet s’est arrêté en 2010. Sous l’autorité de la SD informatique de la DEAH.

Il existe un comité sectoriel de pilotage des SI. Dans le cadre de la mise en place d’un comité élargi, des membres ont été identifiés dans les OST et les directions générales. Le comité élargi se réunira bientôt pour la première fois. 7 volets ont été identifiés pour ce comité, y compris par exemple les outils de développement. Les aspects liés à la codification des référentiels seront dans le périmètre du comité. Concernant les outils en l’état c’est un environnement full Microsoft (SqlServer, .Net), client léger, avec ESRI ArcGIS qui est mis en œuvre. Cependant ces choix pourront être discutés par le comité. Le DG de la DISI dirige ce comité. Son règlement intérieur prévoit des réunions régulières, de l’ordre d’une à deux par an. Le volet 4
concerne la culture métier. Il s’agit de bien définir le **vocabulaire du secteur** avec les différentes personnes impliquées. Par la suite la politique de codification s’appuiera sur le vocabulaire. Il est entendu que la politique de codification doit résulter d’un dialogue entre les acteurs du secteur et l’informatique pour prendre en compte les problématiques métiers mais aussi techniques.

Les **applications hébergées** sont : SNDA, PNE, SIG (SIGMA), SIP, PMH.

- Le SIP est porté par la DPAE. Il est une modernisation de reflex. Il n’a jamais fonctionné pour cause de nombreux dysfonctionnements. Le code source livré ne semble pas exploitable et les développeurs sont partis. Il a été développé par IT Solution à partir de 2011, et financé par la GTZ. La mise en œuvre technique a été longue et la recette a été faite longtemps après la livraison, révélant les dysfonctionnements. L’affaire est encore en cours.
- Le PMH (petite et moyenne hydraulique) est géré par la DHA (Direction de l’hydraulique agricole). Livré en 2016, le mécanisme de mise à jour n’est pas encore défini.
- Le SNDA n’est pas abordé car nous avons des informations par ailleurs.
- SIGMA est un SIG à vocation de synthèse. Un portail web permet la diffusion, l’administration se fait par client lourd ArcGIS.
- La GED permet de numériser des études sectorielles. L’accès lecture seule est ouvert au sein du secteur.

<table>
<thead>
<tr>
<th>Jeudi 21 Juillet 2016, matin</th>
<th>MRE : Rencontre avec le secrétaire général</th>
</tr>
</thead>
</table>

Il y a 4 ou 5 ans, un contrat de développement logiciel avait été pris par l’ANRH. Il avait donné lieu à un système SOURCE qui n’avait pas donné satisfaction. Le contrat avait été résilié, un travail de diagnostic avait été entrepris. Les systèmes sont aujourd’hui à optimiser.

Les équipements de l’ANRH ne sont pas obsolètes. 100 stations hydrométriques et pluviométriques automatisées sont en place. La transmission automatique est à renforcer. Pour les eaux souterraines il y a un problème de disponibilité, il faut mieux décentraliser. Il y a des disparités régionales. La baie d’Alger dispose d’un système de piézomètres automatisés (sans télétransmission).

Il faudrait ajouter un système de suivi et dévaluation qui utilise tous les autres SI. Au secrétariat général, c’est l’information de synthèse qui est remontée. Par exemple, l’ANBT transmet le 10 de chaque mois l’information sur la pluviométrie, les barrages, la qualité.
Annexes C
Compte rendu des entretiens menés durant les missions au Maroc
Mdme Meryem El-Madani, GIZ, a participé à l’ensemble des entretiens.

| Lundi 25 Juillet 2016 (Matin) | Ministère délégué de l’Eau / Direction de la Recherche et Planification de l’eau –DRPE-
Division de de la planification et de la gestion de l’Eau
Division des ressources en eau
Division de la qualité de l’eau et de la lutte contre la pollution
Division d’Approvisionnement en eau potable et Assainissement en Milieu Rural |

Il n’y a pas aujourd’hui de consolidation nationale de l’information recueillie par les ABH. Une étude de conception a été réalisée, le développement va commencer. Un référentiel est déjà fait et est environné de métadonnées en 2015. L’objectif est d’établir un partage avec le secteur de l’eau. Le SI aura aussi un objectif de partager la donnée avec le public. Des questionnaires ont été distribués aux partenaires pour connaître les données dont ils disposent, qu’ils peuvent partager, dont ils ont besoin.

Pour la qualité, les sous directions Pollution et Évaluation disposent de 2 SIG (évaluation de la qualité, sources de pollutions). Ils sont basés sur ArcGIS Server et Oracle 11g. Il existe des réseaux par agence, mesurés 2 fois par an. Le réseau national est la somme des réseaux régionaux. Les ABH sont en fait les ex directions régionales. Les agences de bassin font un prétreatment de la donnée mais la base de données n’effectue pas de contrôle. La faiblesse réside dans les processus d’acquisition de terrain. Des réflexions sont en cours sur la création d’un laboratoire central. Aussi, 2 grandes applications coexistent, le SIG Qualité des eaux et le SIG « Sources de pollution ».

Pour le SIG Qualité, suivi de la qualité, un fichier Excel à emplacements fixes est transmis aux ABH qui le renvoient complété. Le système repère les champs obligatoires non renseignés mais un contrôle visuel est effectué pour le reste par l’ABH à l’envoi puis par le ministère à la réception. L’outil propose un calcul de classe de qualité avec une grille pour les eaux superficielles, les eaux souterraines, les retenues de barrages. Les grilles portent sur 6 paramètres et l’évaluation se fait au paramètre déclassant. Il s’agit d’un module ArcGIS. Les données intégrées remontent à 1980 mais le système existe depuis 2011, développé avec un BE privé. La grille est définie par un arrêté. Le réseau de mesures est validé avec la centrale. L’outil ne dispose pas de contrôles automatiques. L’externalisation de la collecte de données n’a pas fait l’objet d’une évaluation. Une seule ABH a son propre labo interne. Réflexion en cours pour un labo national, qui servirait à faire des contrôles ou audits.

Le SIG Sources de pollutions est plus récent : il concerne les sources domestiques, industrielles, décharges, carrières, etc. Un module de synchronisation serait à développer pour le lien ABH – Centrale. L’échange serait automatique ou semi-automatique. Le VPN ne fonctionnant pas toujours. Un tableau Excel est envoyé à la centrale, il s’agit bien d’un tableau et non d’un fichier à emplacements fixes. Il faut modifier des interfaces pour cela.

Au niveau de la perspective SI national, il y a des systèmes bien identifiés (« noyau ») et des systèmes « parallèles » développés hors cadre DOSI et encore des systèmes « satellites » par exemple dans chaque agence. Aussi pour chaque étude il y a aussi des SIG créés par chaque BE. Il y a un projet gouvernemental de SIG partagé (ministère de l’intérieur). Par rapport aux deux applis qualité et source, il y a une perspective de nouvelle prestation pour unifier les deux. Il existe un comité de pilotage et un comité technique (niveau SNIE).

BAC21 fournit des données en temps réel, 2 fois par jour, sur une emprise nationale. Sert pour l’annonce de crues.

La Base de données de Gestion des Barrages est une application qui centralise des données journalières, mensuelles et annuelles. Le Bilan est réalisé au niveau des ABH de même que la bathymétrie des barrages.
Des publications annuelles sont réalisées en matière de qualité des eaux, situation hydrologique et barrages. On observe parfois un décalage de 2 ans entre donnée collectée et publication finale.

<table>
<thead>
<tr>
<th>Lundi 25 Juillet 2016 (matin)</th>
<th>Ministère délégué de l’Eau – Direction des Affaires administrative &amp; Financière Division de l’Organisation et des Système d’Information Mr Hicham Jallil</th>
</tr>
</thead>
</table>

Il existe plusieurs services au sein de la DOSI dont :
- 1 service R&D en SI
- 1 service de maintenance de Réseau
- 1 service d’organisation
- 1 service de documentation (s’appuyant sur une GED et les archives)

Le SNIE : Le projet de SNIE marocain vise à doter le royaume d’un espace de partage de l’information sur l’eau. Le Ministère est le maitre d’ouvrage du SNIE. Le SNIE se composera d’un SNIE « portail », public, et d’un SNIE « partenaires » avec authentification pour l’échange des données privées. La gestion des métadonnées et l’indexation des données par les métadonnées est prévue dans le SNIE. Le SNIE ne constituera pas « la » base de données sur l’eau, mais sera un outil de mise en réseau, de diffusion, pour les partenaires. Le comité du SNIE est composé de personnel « métier » et de personnels « SI ». Le SNIE possèdera son référentiel interne mais il ne s’agira pas d’une normalisation du langage commun. Le SNIE disposera d’une interface SIG. Son architecture technique n’est pas encore définie.


BADRE21 : BADRE21 a vocation à centraliser les données brutes. Il y a une réflexion sur une refonte complète de BADRE 21. Précédemment les échanges se faisaient par envoi physique de dump de base de données avec parfois quelques problèmes. La nouvelle application envisagée sur le web vise une synchronisation automatique des données avec administration des référentiels dans la base centrale. La logique est la même pour le développement du SNIE. L’architecture de BADRE21 est Oracle/J2E avec une géodatabase. Il existe un portail géospatial pour l’exploitation des données sur carte, avec ArcGIS Server et oracle.

La DOSI veille à ce que le ministère soit propriétaire du code source. Des applications sont développées en interne à la DOSI notamment concernant la gestion des stocks. La DOSI est composée de 4 personnes ingénieure. La GED est en cours de refonte.

Certaines applications sont hébergées directement dans les DG et développées indépendamment de la DOSI. Un cahier des prescriptions spéciale (CPS) a été rédigée pour l’application « Qualité des eaux ».

|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|

coordination avec le MRE. Depuis 2006, un SI interne à la direction de l’irrigation est mis en place. Traitement, archivage, harmonisation des données de l’irrigation nécessitent un système opérationnel avec un dictionnaire de données, métadonnées sur tous les périmètres irrigués. Il existe 3 grands types de périmètres : grande hydraulique (sous responsabilité de l’Etat) ; la Petite & Moyenne hydraulique (PMH et <2000 Ha) gérés par des associations d’usagers, et l’exploitation individuelle qui est réalisée à 80% sur les nappes.

SI : plusieurs antennes / thématique ; sources différentes.


Barrages : ils sont gérés au sein de la DRPE, chaque jour. Les barrages qui intéressent l’irrigation sont sélectionnés. Suivi de l’irrigation, outputs journaliers, hebdomadaires, mensuels, trimestriels... Données des barrages et des offices et de certaines DRA sur les consommations d’eau et les cultures mises en place. La DRPE fournit le volume délivré et il est comparé avec le volume en tête de périmètre irrigué pour estimer les pertes en eau. la DRPE fournit un fichier Excel avec intégration automatique. Les barrages sont codifiés et les codes sont partagés avec la DRPE. Quand un barrage est inauguré les codes sont entrés à la DRPE et ici. Une première vérification avec les X, Y est réalisée. Chaque début septembre le référentiel est mis à jour (début de campagne agricole). Si un nouveau barrage est créé, il est inséré en septembre dans la base de données. Au sein du ministère, dans le service, un responsable est identifié pour chaque métier.

Les débits sont demandés dans le SNIE, on n’y a pas accès pour l’instant. Ils servent pour l’annonce de crues envers les agriculteurs.

Périmètres irrigués, secteurs : 700 000 ha de grande hydraulique ont été digitalisés et géo-réferencés en 2007/2008. La mise à jour est effectuée à chaque étude, même par d’autres divisions. En parallèle, il y a des études en cours pour inventorier la PMH (petite & moyenne hydraulique) et la géo-référencer. Beaucoup de données anciennes existent avec juste un X, Y. Pour l’irrigation privée, l’info est par commune (Superficie irriguée par commune) et est mise à jour via le RGA (recensement général agricole). Les assolements restent difficiles à évaluer. Des essais par analyse d’image satellite sont réalisés. Il y a des inventaires localisés de l’arboriculture et des agrumes via des orthophotoplans. Ces cultures ne bougent que très peu dans le temps. La codification a été faite par le ministère dans une étude. La codification est validée par les offices régionaux et les nouveaux périmètres sont bien codifiés à leur tour. Au niveau du contrôle à l’import, il y a des messages d’erreurs uniquement si l’import a échoué mais cela reste imprécis.

Infrastructure SI : BDD SqiServer avec 2 interfaces Web, les anciennes ont été développées en ORACLE Form coupé avec le Logiciel ArcGIS Server pour le SIG. ArcGis reste le SIG le plus utilisé en socle SIG. Sur le web : carto en lecture seule. La BDD n’est pas encore externalisée via IP et les données sont communiquées par Excel.

Développement des applications : ont été réalisées avec un BE. Pas d’informaticien ici. Une étude et deux bons de commandes pour le développement ont été nécessaires. Il est possible de travailler avec d’autres BE qui respectent l’architecture générale pour intégrer le livrable. Le code est propriété du ministère.
Au ministère, un topographe avec des bases de télédétection a apporté l'idée du nouveau SIG. Il n'y avait qu'une cellule SIG qui ne pouvait répondre à tous les besoins. Il a fallu donner plus d'autonomie sur le SIG. Déficit en SQL et avec l'habillage. Il y a des formations prochainement prévues sur l'utilisation du système. Les offices régionaux ont de la qualité sur les données piézométrique mais personne ne les exploite vraiment, il manque la ressource humaine. La donnée reste là sous forme de rapports. Un autre service devrait s’en servir, il a une BDD mais qui est un peu vide. La BDD est hébergée ici dans une salle serveur. On s’y connecte par compte. Un grand ordinateur sert de serveur. La Sauvegarde est réalisée sur disque dur externe. Ce SI s'appelle le « SIG Irrigation ». Réalisé sur appel d’offres, sans bailleur de fond. D’autres BDD existent mais pas encore intégrées : énergie des stations de pompage...
Entre le début de l’étude et maintenant, tout le ministère a été restructuré. Beaucoup d’interfaces qui avaient été développées sont restées en suspens. Lors de la mise en œuvre au plan « Maroc Vert », beaucoup plus de poids a été donnée aux directions régionales, créées en 2009, qui devaient prendre le relai de la centrale pour la planification.

**LE SNIE**

Le SIG irrigation est prévu de s’intégrer au SNIE. Il y a eu plusieurs ateliers. Ça n’avance pas vite. Par exemple sur les modalités de partages des données, notamment les agences de bassins vendent la donnée mais ne partagent pas. Pourtant les PDRE sont élaborés ici et les ABH en bénéficient. Un projet de conventions est encore flou, il n’est qu’un engagement moral. Engagements par ateliers, 5 réunions. Le ministère fait partie du comité (technique) ? Sur le SNIE, il y a surement des points de vue différents selon les personnes. Au début, le but était le partage de la donnée elle-même. L’idée du SNIE est impulsée avec le SEMIDE. Pas de noyau bien défini explicitement. Il y a déjà une communication avec la DRPE

**Le dictionnaire de données** est consultable, fait dans le cadre du SIG Irrigation et fourni au SNIE dans un canevas.

**Métadonnées du périmètre irrigué** : elles comptent notamment la définition, l’ensemble des données reliées, la source d’information, la date, la date d’équipement, la date de réhabilitation. Pour chaque PI.
Dans le SNIE il y aura des interfaces d’échanges.
Le ministère se dit prêt à partager les données s’il y a du retour. Le SNIE n’est pas reconnu des directeurs généraux, ministère, etc. Le problème de partage pourrait être débloqué si cela était reconnu des différentes entités. Les attentes spécifiques du SNIE résident essentiellement dans la constitution et la mise à disposition de banques de données de référence à l’échelle du pays.

Les DRA : Direction Régionale sont des déconcentrations du ministère au niveau de la région.
La Direction provinciale est en charge de l’exécution des programmes.

Rapports pour le ministère : Ils sont non-publiés. Un gros rapport annuel et plusieurs rapports sur différentes thématiques à différentes fréquences sont produits. En synthèse, il y a des difficultés d’acquisition de la donnée avec le MRE (volonté de partager). Le ministère propose les principaux produits tels que : carte des PI et bilan des usages (qui remonte à travers les offices) pour prendre les décisions et réajuster la campagne agricole par rapport à la ressource. (Cette année, 2016, est très sèche mais un bon stock de barrage de l’année dernière).
Les années d’inondation, des crues se sont déroulées durant 3h, beaucoup d’agriculteurs auraient pu limiter les dégâts avec un système d’alerte précoce plus opérationnel et fonctionnel.

---

**Mardi 26 Juillet 2016 (Matin)**

HCEFLCD – Haut-Commissariat aux Eaux & Forêt et de lutte contre la désertification
Mr ELHAJOUNI – Chef de division Eau & Sol

Il existe une base de données des programmes et des projets actifs. Cette base de données est interfacée sur le Web (Application Suivi Contrat Programme) et est géré par la DPSI (Direction de la Planification et du Système d’Information). Des droits d’accès sont établis pour la saisie des informations. La réactualisation des programmes est effectuée au niveau régional par les DREF (Direction Régionale des Eaux & Forêts) et la saisie de l’état d’avancement (suivi / évaluation) est effectuée par les directions provinciales (DPEF). Le Haut-commissariat initialise le système avec les contrats & programmes et l’actualisation suit son cours par le biais des services déconcentrés. La mise à jour est effectuée tous les 15 jours.

En matière de données de connaissance sur le milieu, à travers le Plan National d’Aménagement des Bassins Versants (PNABV), pour chaque bassin versant a été établie une cartographie SIG des zones prioritaires d’érosion. L’ensemble des plans décennaux utilisent ces données d’étude. Il existe également des plans prioritaires pour lesquels les ABH sont sollicitées pour les données. En 2016 a été établie une convention cadre pour l’échange d’informations y compris les données bathymétriques (à des fins d’analyse des érosions et pour les canadairs).

Il existe d’autres systèmes qui ont notamment été financés par la JICA et qui ont été installés au niveau de 2 DREF. Il s’agit de l’application MITAQ couplé à la cartographie. Ces applications ont été délaissées au profit des applications Web.

Au niveau de chaque ABH, il y a un représentant du DREF au conseil d’administration. Le circuit de l’information passe par une sollicitation des ABH pour obtenir les données. Au niveau des ABH il existe des PDAIRE (Plan Directeur d’Aménagement Intégré des Ressources en Eau) qui sont actualisés tous les 5 ans et qui contiennent les plans d’action anti-érosifs. Actuellement nous en sommes au 2ème cycle. Les données sollicitées auprès des ABH sont gratuites. Les données météorologiques sont payantes. Il existe des postes de suivi météorologique qui sont gérés par le centre de recherche forestière. Il existe également un inventaire forestier national qui a fait l’objet d’une cartographie sous SIG.

Les attentes sur le SNIE sont avant de « faciliter la GIRE » et limiter la déperdition des efforts en matière de donnée.

| Mardi 26 Juillet 2016 (Matin) | Ministère des ressources en eau – Présentation des applications « SIG Qualité des eaux » & « SIG Sources de Pollutions des Ressources En eaux ».

Les équipes de la DRPE nous présentent les 2 applications phare développées pour leurs propres besoins. Il s’agit du SIG Qualité des eaux (SQE) et du SIG Sources de Pollutions des Ressources en eau (SPRE).

Les 2 applications reposent sur le même socle technique à savoir une Base de données ORACLE couplée avec ArcGis Server et développée en JEE.

Le périmètre métier de l’application SPRE, développée de 2013 à 2015, s’articule autour de l’inventaire des rejets et des sources de pollutions comportant les rejets domestiques, les rejets industriels, les mines, cimetières, pollutions agricole et accidentelles, les décharges et les carrières. Cette application permet de renseigner les charges polluantes et est dotée d’un volet SIG. Les données de base contiennent les découpages administratifs, les zonages d’action des ABH, les centres urbains, des tables de référence sur les valeurs limites d’émission, les rendements ainsi que les données pour le suivi des stations d’épuration et le suivi de la réutilisation des eaux usées. La base de données est dimensionnée pour permettre de stocker les valeurs issues des enquêtes ou études. Si aucune enquête n’a pu être effectuée, les valeurs sont calculées par un programme répondant à des règles de calcul. Les mises à jour de cette base de données se font par un échange de dump de base de données (.dmp) transmis par e-mail. L’ABH crée les STEP ou les rejets et transmet son dump (réplica de base de données) avec les paramétrages associés. Les fréquences de mise à jour ne sont pas précisées. Le MRE transmet son dump de base de données contenant la mise à jour des référentiels et les paramétrages nécessaires. Le code source est propriété du Ministère. Il n’existe pas de gestion des paramètres mesurés, ces derniers sont codés en dur dans l’application.
L’application SIG Qualité des eaux repose donc sur le même socle technique que l’application des sources de pollution (Base Oracle, Web, ArcGis Server & développement en JEE) mais est beaucoup plus orientée sur la bancarisation des données de qualité des eaux dans le milieu naturel (Qualité des ressources en eau). Des grilles d’évaluation standards sont directement implémentées et permettent d’évaluer la physico-chimie en général pour les eaux de rivière et les eaux souterraines, la qualité trophique des barrages, la qualité hydrobiologique (IBD – IBGN). Comme l’application précédente (SPRE), l’application est également « décentralisée » au sein des ABH qui sont responsables de son alimentation. Il est important de noter que l’application permet d’intégrer directement les bulletins d’analyses de qualité des eaux à partir d’une trame connue et partagée. Il existe un module de synchronisation basé sur un échange standardisé de fichier Excel. Les référentiels sont gérés au sein de l’application centrale qui diffuse les mise à jour auprès des ABH. Enfin un module d’exploitation automatique des résultats est présent et permet d’établir des synthèse par secteur géographique et par type de ressource.
Les deux applications, qualité et sources, ont été développés par deux prestataires différents. La codification des paramètres n'est pas harmonisée. Il y a cependant un besoin de rapprocher les données des deux applications. Aussi, un marché de fusion des deux applications est prévu.

Mardi 26 Juillet 2016 (Après Midi)  
ONÉE – Branche Eau / Direction de la planification  
BELKADI Mostafa : Chef de service Coordination Ressources en eau  
CHALOUAN Amal : Chef de service Coordination Études

L’ONÉE est en charge de la production d’eau potable urbaine & rurale et s’occupe également du volet lié à l’assainissement en milieu rural. L’ONÉE a 10 directions régionales sur tout le royaume. Il y a un SI au sein de l’ONÉE, initié il y a longtemps. SIONEP : AEP, assainissement, AEP rural... SIONEP est composé du SI PEQ et de GDE.

Le système PEQ (planification équipements) est composé de 5 applications développées dans la même enveloppe, avec le même prestataire, construit sur fortran, Oracle, et les 5 interfaces web. Le PEQ est donc composé de 5 sous-systèmes que sont :

  - CENTRE (populations, situations administratives, etc.) (=usages ?) provient du HCP (haut commissariat au plan).
  - Ressources (N° IRE : Indice de Ressource en Eau, coordonnées, débits, capacités de productions, essais de pompages...) certaines informations viennent des ABH et d’autres viennent de l’ONÉE (ex : essais de pompages, certains forages...). En effet l’ONÉE avait déjà historiquement des données de
pompages d’essai et des informations sur les débits d’exploitation qui sont complétées avec les données des ABH. Les ABH envoient les informations sur demande et reçoivent une fiche technique.

- Application de Gestion des projets (fonctionnelle),
- Application de Gestion des marchés (fonctionnelle),
- Application de gestion des Actions foncières (fonctionnelle),
- **Application Planification/programmation**: application purement stratégique. Évaluation d’un besoin à un horizon déterminé et qui repose principalement sur des modèles d’allocation et de demande en eau.

Le PEQ est hébergé par la DSI de l’ONEE.


**Echanges avec les ABH** : demandes sur courrier mais gratuit. L’ONEE fournit aussi des données à l’ABH : évolution de la population (pour besoin) et demande en eau / dotation. Pas d’échange formalisé, pas de procédure. La demande est effectuée directement à la direction de la planification. L’ABH envoie aussi les bilans de barrages pour permettre la planification.


**Dans Excel**, les données de production issues des ressources propres aux régies et aux concessionnaires (eaux souterraines) sont conservées (échange par courrier) et servent à faire les projections. Il n’y a pas de contrat ou de convention mais l’information circule chaque année.

Barrage > station de traitement > eau délivrée : Le tronçon est géré par l’ONEE. Si ça passe par un cours d’eau, canal... C’est l’ABH ou l’office de mise en valeur agricole. Compteur eau brute : dans GDE.

**Le SNIE** : compris ici et voulu comme une banque de données consultable. Ici on aurait besoin des données piézométriques pour voir comment la nappe évolue. La planification est annuelle.

A priori l’ONEE est propriétaire du code source, et deux prestataires différents ont été sollicités pour GDE et le PEQ.

La donnée de l’ONEE est mise à disposition gratuitement d’un BE. Tous les 3 ans un annuaire public est édité avec les données de production et les tendances. Un autre document de prélèvements des barrages est diffusé aussi.

**Système GDAL** : Gestion des Données Analytiques propres aux Laboratoires pour la qualité de l’eau brute et traitée et distribuée. C’est un système propre au labo : données de points de prélèvements (barrages, ressources souterraines...) traçabilité, suivi, historique, évolution des indicateurs... Présent au labo de l’ONEE central et dans les labos des directions régionales. Tous sont équipés de GDAL. Planification des missions, programmes de prélèvements mensuels, tableaux de bord. Le flux de données autour de GDAL n’est pas évoqué.

Ici on aimerait avoir une vision globale, en amont et en aval, ex : remplissage des barrages, etc.
Un référentiel des indicateurs a été constitué. Il y a une volonté de le diffuser au niveau national.

SIG : en cours de construction.
Systèmes SAP : progiciel de gestion intégré (non spécifique à l’eau)

<table>
<thead>
<tr>
<th>Mercredi 27 Juillet 2016 (Matin)</th>
<th>ABHBC – Bouhgreg Chaouai</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Service informatique et des Systèmes d’information</td>
</tr>
<tr>
<td></td>
<td>EL MESBAHI Mourad</td>
</tr>
<tr>
<td></td>
<td>ELALOUI Rachid</td>
</tr>
</tbody>
</table>

Ici, un schéma directeur des SI a été créé et vient d’être finalisé. Mission 1 était le diagnostic, l’état des lieux de l’ABH avec des recommandations qui a donné lieu à une cartographie fonctionnelle et à l’identification des processus métiers. Le cœur de l’étude était l’urbanisation du SI. Tous les flux ont été identifiés, les référentiels de données à mettre en place, les personnes (fournisseurs, clients…), les référentiels de ressources en eau. Chaque référentiel a sa propre application propriétaire qui permet l’édition, les autres applications consomment la données de chaque référentiel pour éviter la redondance. Projet de mise en œuvre d’ESB (Enterprise Service Bus) pour permettre l’échange entre différents systèmes hétérogènes (interopérabilité). Donc : Le schéma directeur implique des ESB à mettre en place, les référentiels de données, les référentiels de règles de gestion. Planning effectué avec fiches de projet, en cours de réalisation.

Les SI techniques sont

- **BADRE21** : gestion de la ressource. La donnée et l’identification des lieux. Application paramétrable faite avec Oracle Forms. Refonte envisagée à la centrale, même socle, interface web... Un applicatif calcule le bilan hydraulique automatiquement, il y a des états de sorties sous Excel.
- **Application FOLLOW : Remontée automatique, télémesure**, pour les annonces de crues : des stations sont équipées et remontent la donnée à l’ABH par GSM, maintenant GPRS. Chaque station envoie (climato, débit/hauteur… ) vers le serveur (radio ou IP 2,5Ghz (? ) ) stocké sur FTP et un applicatif récupère la donnée toutes les 5 minutes. Information non couplée avec BADRE21 mais (cf. division technique métier) un mécanisme de contrôle et validation pour y injecter la donnée est en perspective. Ce dispositif a un aspect pilote : une quarantaine de stations. BDD technique : **SqlServer** avec client lourd et client léger. Lié à un SIG. Les annonces de crues ne sont pas remontées au central. L’information non automatisée est saisie manuellement dans BADRE21.
- **Application qualité** au niveau central est copiée ici. (seules les données de l’ABH sont saisies). (web)
- **Application SPRE** (sources de pollution) (web)
- **Application de gestion des barrages** (web) : barrages, bilans...
- **Application de gestion de domaine public hydraulique** (demandes d’autorisations, infractions, etc.) : pas d’équivalent au central. Le référentiel clients est géré ici. Chaque ABH a développé en spécifique. **Oracle, 2006**
- **Application redevances** : le référentiel clients est utilisé ici. Chaque ABH a développé la sienne en spécifique. Ici c’est un module lié à l’apli de gestion financière. **Oracle reste le socle technique de base de données.**


Il existe une GED gestion électronique des documents, le SIG est connecté à la GED. Site Web : un service en ligne permet de suivre l’état Web Service SOAP WSDL publié au niveau Oracle. Mis en œuvre avant les ESB. Le service web actuel est sur le DPH. Avec les ESB il y aura d’autres services web. Le CIN (code national de l’utilisateur) ou la raison sociale seront entré pour obtenir le service Web.

Échanges avec la centrale
Envois de dumps, manuel, par FTP pour les applications qualité, SPRE, gestions de barrages, BADR21. Les remontées ne sont pas fréquentes, c’est à la demande. Il n’y a pas d’infrastructure satisfaisante pour une synchronisation automatique… Envois de canvas par fichier Excel en réflexion. Aussi dans le cadre d’une réflexion sur un système intégré technique pour les échanges.


Synthèse métier :
- Périmètre commun : BADRE 21 (ressource), qualité et spre, barrages.
- Applications spécifiques : follow, domaine public, redevance, SIG partagé.

Une brique décisionnelle est un projet en cours pour chapeauter le tout. Tous les indicateurs techniques y seront intégrés. C’est une étude de la centrale. A l’ABH il y a des solutions open source (en cours) pour extraire des indicateurs. Les logiciels métiers (aspect modélisation hydrologique, hydrogéologique) : sont gérés par la division gestion des ressources en eau. Ex : MIKE Basin.

SNIE : pas beaucoup d’informations. Voir la division technique ?
Il y a des échanges avec les autres ABH entre DSI. Pour certains projets spécifiques il y a des comités, sinon il y a des échanges informels. Le schéma directeur a pu être envoyé à d’autres agences intéressées. Le projet de virtualisation (pour sécuriser la donnée) est aussi une occasion d’échanges. Attentes SNIE : permettre la mutualisation de la donnée.

M. Le directeur
Une ancienne étude a été effectuée par le SEMIDE il y a des années dans le but de réaliser un SI pour les pays de l’étude. A l’époque, la conclusion était que BADRE21 pouvait faire office de SI technique pour la Maroc, si complété avec d’autres thématiques de données. Ici on donne beaucoup d’importance au SI. En suivant les cadences et avec le central. Le système n’est pas parfait mais permet de produire la donnée de synthèse et on travaille à son amélioration. L’apport de l’informatique est ressenti comme décisif par le directeur dans la capacité à traiter l’information et le gain de temps apporté.

Le suivi du réseau est bien externalisé (prestataires privés). Un cahier des charges est émis vers les prestataires. Piézométrie, débit (stat hydro), jaugeages différentiels sur cours d’eau (pour questions techniques recharge, perte de débits...).
- Piézométrie : pour une bonne partie automatisé, mais pas exhaustif. Jusqu’à 24 paramètres pourraient être intégrés si on ajoutait les sondes. Les piézomètres automatiques sont vérifiés visuellement, parfois le BE va faire une mesure pour étaloner. Parfois il y a des contre-visites, y compris l’une a donné lieu à une résiliation. Les contrôles sont inopinés. Des problèmes de vandalisme
empêchent l’automatisation de tous les piézomètres... Sur les stations hydro il y a un gardien. Pour l’annonce de crue, info toutes les 5 minutes.

- Les gardiens de l’hydrologie sont salariés de l’ABH. BADRE21 est à jour sur les données hydro, les infos de FOLLOW sont saisies dans BADRE. Toutes les valeurs sont saisies, une fois par mois, dans BADRE. Quand l’interface sera présente, il n’y aura que de la validation à faire.


Le suivi piézométrique est à pas mensuel.

<table>
<thead>
<tr>
<th>Mercredi 27 Juillet 2016 (Après Midi)</th>
<th>DMN Direction Nationale de la Météorologie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HADDOUCH Hassan Chef du CNRMSI</td>
</tr>
<tr>
<td></td>
<td>DRIOUECH Fatima Chef du CNC</td>
</tr>
</tbody>
</table>

Deux types de SI au sein de la DMN :

- Systèmes opérationnels (calculateurs), systèmes de concentration, diffusion, systèmes d’intégration des données (élaborer les bulletins) + systèmes télécom
- Systèmes facilitant la prise de décision (web) / extranet, intranet + systèmes dédiés (aéronautique... )

Données :

- En temps réel (manuel / synoptique : chaque heure, 3h...) ou automatique sur différents paramètres météo. Normes OMM.
  => états initiaux pour faire tourner les modèles (1j à 8j : déterministe. Au Maroc : 3j)


La DMN ne récupère pas d’infos extérieures. La DMN peut prendre en charge des réseaux et fournir l’info de clients : ex ministère de l’agriculture (projet en cours, état des stations inconnu, étude de diagnostic en cours). La vente de la donnée constitue le financement du fonctionnement, de l’investissement, du matériel, de la maintenance, frais de déplacements, etc. Le calculateur devrait être changé tous les 4/5 ans et cela constitue.

Le ministère des eaux et forêts a une application qui prend des infos en input aussi. Envoi par FTP pour cette appli sur-mesure pour automatiser. Ils ont un compte extranet.

Il y a des développeurs internes. Certains systèmes (concentration des données... ) sont achetés. L’extranet, l’applicatif, le besoin client, est développé en interne. Cela facilite la maintenance. Les informaticiens sont du métier.

44 stations synoptiques, 156 automatiques couvrant l’ensemble du royaume. « ça n’est jamais suffisant » mais la situation actuelle s’est améliorée. À la DMN il y a besoin de stations complètes. Pour l’agriculture ça peut être plus restreint : température ou bien juste pluie, etc. Les modèles s’affinent, ont besoin de plus d’infos pour l’état initial.

La DMN n’utilise pas les données CRTS. La DMN dispose de 3 stations de réception satellite. C’est elle qui a eu droit au service satellite en premier. Il y a un échange au niveau mondial y compris pour les satellites. Via le système mondial de l’OMM. Les satellites géostationnaires envoient des images (infrarouges, visibles... ) exploitées telles quelles ou pour des produits élaborés. Certaines données élaborées des satellites vont en « donnée d’entrée des modèles ». Il y a aussi des données d’avions, données ballons (coupes verticales), données radar : projet / Maroc. Ex : indice de végétation : élaboré à partir des données satellites (combinaison de canaux). Déplacement de nuages... Tout est automatique. 36 000 km. (En fait la DMN vend le service, pas la donnée elle-même). (Qualité de l’air : certains polluants sont mesurés. 29 stations fixes gérées par la DMN.)

Le SNIE : jusqu’à maintenant « c’est un projet sur le papier. C’est une étude. ». La DMN a été associée, « pas mal de réunions », dans la partie études. 2 réunions. En tant que DMN, toute information peut être mise à disposition à travers la réglementation : demande ponctuelle ou bien convention.

Pour un SI national, il faut regrouper les informations ou faire des passerelles. Beaucoup d’actions n’ont pas abouti. Malheureusement il y a du blocus. L’infrastructure ne le permet pas. L’ABH ne sait pas dans quelle phase en est le dernier projet initié par la centrale, même si elle était impliquée au départ.

Les agences fournissent l’information ; la collecte jusqu’à la structuration de la donnée est à la charge des agences.

Deux composantes sont présentes à l’ABH : SI technique, SI de gestion.

Le socle technique global est Oracle.

Intégration de BADRE21
BADRE21 : contient la donnée brute et donnée élaborée (précipitation, hauteurs d’eau, jaugeage... ), la piézométrie... sert pour les annuaires hydrologiques. A l’ABH il y a deux ans, le module a été mis à niveau. Ce n’est plus un client serveur mais un web pour faciliter l’administration. Mais même processus. Echanges avec la centrale : le module transfert ne fonctionne pas très bien ou ne répond pas à la consolidation des données souhaitées. Avec des dumps il y a un autre problème : BADRE21 était basée sur la PK N°IRE en deux parties : indice codé sur 3 positions (basé sur un découpage du territoire marocain ech 200 000 dans les années 30), contenant l’ordre. Le lieu de prélèvement est aussi indiqué. Le N°IRE est la clef primaire. A la centrale on a voulu représenter la zone d’action de chaque agence sur la base des indices. L’affectation du N°IRE se fait par la centrale. Une agence peut demander une plage. Mais vu l’utilisation de la grille pour associer les points aux agences, il peut y avoir des doublons. Ensuite un point d’eau peut être mal affecté si les coordonnées ont été mal saisies et donc affectées à une mauvaise agence dans les échanges de BADRE. Chaque agence n’actualise...
localement que ses propres N° IRE. Suggestion de la DSI : la consolidation doit prendre en compte la date de la mesure, pour ne pas écraser les informations, en attendant la refonte.

**Gestion des retenues des barrages et MECEP**

Outil de gestion des retenues des barrages (**CONDOR**) : développé dans le cadre de plusieurs projets de la Centrale. Géré à la centrale par la DRPE. Soutenu par la GIZ (ou la CTP ?)

**MECEP** : Méthode de conduite et d’entretien préventive des barrages. Pour planifier les actions à programmer pour maintenir l’état et le bon fonctionnement des barrages. Ce n’est pas de l’auscultation (c’est fait dans CONDOR). Composantes génie civil, électromécanique, et auscultation – mais cette partie est gérée dans CONDOR. Cette application est spécifique à l’agence. Une application initiée à la centrale n’a pas abouti. Cette application est installée sur les sites qui relèvent de la zone d’accès de l’agence et au niveau de l’agence pour que le chef divisionnaire gestion durable des ressources en eau.

**GED**
GED : OpenTex / Oracle, création de bibliothèques pour chaque thématique.

**DPH**

L’application DPH (domaine public hydraulique) traite le processus depuis le dépôt des demandes d’autorisation jusqu’à l’octroi ou le refus. Le processus est le même mais les procédures divergent entre chaque agence. L’application a été développée localement pour répondre aux besoins de la division DPH. Il y a un guichet unique. Chaque dossier est associé à un nom de responsable dans le système, et plusieurs personnes peuvent l’instruire. Il y a un tableau de bord des délais, etc.

**Contrats de nappes**

Module contrats de nappes: couplé avec le module modélisation GMS (injection de bibliothèques dans ArcGIS Server) pour associer les résultats de simulation aux autres données. Intégration des modules dans le SIG Toute application SIG doit être intégrée à l’appli SIG globale.
Une seule application avec des droits d’accès personnels. Il y a une application Sources de pollutions dans le SIG. Le niveau central veut consolider les données, ici il y a plus de besoins de gestion. La centrale veut un transfert de la donnée. L’application de la centrale ne répond pas à la problématique. En s’adaptant à la conception de la centrale pour assurer le transfert, d’autres besoins ont été intégrés.

« Ce qui est important, c’est la fiabilité de la donnée brute et de sa transmission au niveau de l’agence. »
Dans BADRE21 la donnée brute subit une chaîne de traitement qui donne des résultats sur les débits (mensuels, annuels) qui va dans les annuaires hydrologiques, qui sont soumis aux institutions de recherche et toutes autres personnes. Le processus global depuis l’acquisition jusqu’à l’annuaire ou l’utilisation dans les modèles est très important. Lors d’une étude les gens se repencher sur la donnée brute, alors qu’il faudrait une banque de données de référence.
BADRE21 contient une partie des observations de terrain. Par exemple la source de pollution est dans le module sources même si un point de suivi de source de pollution est une station. BADRE21 a fait l’objet d’une discussion sur l’intégration de la qualité. Mais la division qualité a jugé utile de faire un développement spécifique. Peut-être que le niveau central s’est éloigné des utilisateurs, et que donc des solutions spécifiques ont été développées.

**Il y a un schéma directeur informatique.**

Les laboratoires sont sollicités par appel d’offre. Les services thématiques imposent des formats de fichiers (Excel) dans les TdR. La partie papier est livrée tout de même.
A l’échelle d’un département (thématique), il y a des discussions pour l’interopérabilité. On doit partir des thématiques gérées par les agences. Exemple : extractions de matériaux : prérogative locale, donc doit être
développé localement pour répondre au besoin. Pour une nouvelle carrière, l’agence évalue l’impact et donne l’autorisation. Pour cela il faut un SIG qui informe sur par exemple les segments de chevauchements de deux autorisations, ce qui est intégré dans le SIG local. En 2008, le SIG englobant toutes les thématiques a été mis en œuvre. Idem pour les prélèvements, les redevances non gérés par la centrale. Le backbone doit être le SIG.

Prélèvements d’eau : L’application restera sur oracle pour rester sur la centrale, mais sera couplée au SIG. Il y a un module prélèvements dans le SIG (associé aux IRE). Il y a BADRE21. Il y a aussi une appli redevances qui gère le recouvrement. Il faut mettre en œuvre un référentiel commun des SI techniques du niveau régional, vision que n’a pas la centrale.

L’application redevances gère tous les types de redevances (AEP, industrie…). Les partenaires déclarent ce qu’ils ont prélevé. Ex : l’ONEP envoie ce qu’elle a prélevé. L’application redevances a un module de calcul. Avec une action BM, un référentiel pour la partie gestion a été mis en œuvre. Pour faire apparaître la chaîne de traitement depuis l’application marché, comptabilité budgétaire… L’application redevances est dans la partie gestion.

L’application prélèvements gère les prélèvements d’eau par enquête.

Difficulté à établir les prélèvements des petits agriculteurs. Il y a des demandes d’autorisation qui permettent de comptabiliser les puits, mais pas de suivre les prélèvements… Il y a eu des essais avec télédétection, mais difficile de calibrer avec des stations terrain fiables… Aujourd’hui il n’y a pas de banque des volumes prélevés. Les nappes font l’objet d’une modélisation et d’enquêtes terrain pour évaluer le bilan.

Développements : 2 personnes gèrent les SI. Tous les développements sont externalisés. L’ABH est propriétaire de tous les codes sources.

MECEP : développé par l’ABH. En général, on passe de serveurs stand-alone à serveurs virtuels. Il y a des installations locales. Module import/export (dumps), qui prend en compte la traçabilité. Car la planification se fait au niveau de l’agence. En maintenance évolutive (indicateurs…)

Il y a de la communication entre les autres agences quand quelque chose est fait, y compris des développements. Les autres ABH peuvent profiter de développements locaux, en repassant par un marché pour s’inspirer.

Le volet gestion va donner lieu à une harmonisation intégrée pour toutes les ABH.

Pour l’extraction des matériaux, c’est intégré directement dans la BDD du SIG. Le SIG a sa propre BDD, interfacée avec BADRE21. En ce moment, voir comment interfacier avec DPH.

Contrats de nappe : une personne du BRGM va venir. Le module sera intégré au SIG. Développements en cours. ArcGIS Server acquis avec la GIZ. Tous les développements sont faits avec ArcEngine, ArcSDE. Pour les BDDs, Oracle spatial est mis en œuvre pour profiter de la brique spatiale.

Pour les sources de pollution, c’est en fait intégré à la base oracle du SIG mais compatible avec les échanges avec la centrale. L’agence est à cheval sur 5 régions et chaque région fait son schéma directeur ce qui pose question. Pour une région donnée, un même point peut être suivi par un labo pour une ABH. Juste à côté, un autre point suivi par l’ONEP fait l’objet d’analyses aussi. Comment consolider l’information au niveau national ?

Télémesure : on sensibilise à l’échelle de l’agence pour la télémesure. La division chargée notamment de la télémesure est inquiète du changement. Il faut les rassurer quant à la qualité de la donnée remontée. Des serveurs ont été acquis (dons BM) qui recueillent quelques paramètres pertinents pour le suivi de la ressource. Pour la mise à niveau locale, il y aura un module d’injection qui spécifiera comment et à quel pas l’information sera injectée, dans une table spéciale télémesure spécifique à l’ABH. Qui a la même forme que la mesure manuelle. Ce serait une information journalière.
**Externalisation des mesures** : une division est chargée de contrôler les prestataires. Il reste une interface de saisie, qui peut être utilisée par la division à partir du papier. Sinon il y a un module d’import pour la piézométrie, avec des fichiers au format Date;Valeur.

Une autre BDD « chaîne de traitement hydrologique » (développée à la base au niveau central ?) a été intégrée dans BADRE21 telle quelle. C’est elle qui fait les annuaires. Une fois validée dans la chaîne elle est injectée dans la table BADRE21. La chaîne de traitement hydrologique se faisait avant à la centrale et maintenant dans l’ABH qui ne remonte que la donnée élaborée, validée. Un BE qui veut des infos ne s’adresse pas à la centrale mais aux agences... Travail (courbes de tarages... ) pour arriver à finir l’annuaire n-1 au passage à l’année n, et de diffuser l’annuaire par le Web. Politique tarifaire ? voir avec le CA, etc. « la mise en œuvre d’un SI demande un budget »

---

**Contexte, reconversion**

120 000 ha irrigués. Irrigation depuis les années 40. Réseau de 3 000km, canaux à ciel ouvert mais compte tenu du changement climatique cela pourrait évoluer. Une superficie de 550 000ha a été programmée au niveau national pour reconversion, 88 000 ha ici. Les agriculteurs ne sont en charge que de la reconversion de leur parcelle. Environ 23 000 ha déjà reconvertis dans le cadre de la reconversion individuelle. En collectif 1 500. Ce qui est cultivé : Betteraves, céréales, ...

**Le SIG**

Il y a un SIG depuis les années 1990. BDD sur toute l’infrastructure, canalisations, parcellaire... Possibilité de suivre les changements sur le terrain, extension des constructions... => Mise en valeur de ce système.

SIG installé au début 90 pour suivre la qualité des eaux (nappes) et du sol. Une centaine de sites/nappes et 40 sites d’exploitation. Pas de télémétrie. Le SIG permet de créer des cartes thématiques avec interpolation, 5, 6 fois par an. Conductivité, pH, nitrates, niveau piézométrique. La donnée est envoyées aux partenaires, et injectée sur le site de l’office (cf mai 2016 sur le site)


Le SIG refoudra sera amené à intégrer toutes les thématiques de l’office. L’étude Appui à la mise en œuvre s’organise en trois phases :

1. Diagnostic SIG existant
2. Proposition d’une solution GIS intégrée
3. Déploiement de cette solution et achat de matériel

Le SIG sera actualisé fréquemment y compris sur les nouvelles canalisations, l’état du réseau, etc.

La zone de projet s’étend sur 22 000 ha, l’appli concerne 5 000 ha mais sera généralisée.

Le problème de sauvegarde (backup) des données se pose aux yeux de l’office. L’office pense à des disques durs externes, mais ça ne serait pas suffisant d’après eux.

(Nous demandons ce qu’il en sera de la consommation, de la diffusion des informations avec les autres systèmes ? Quels échanges sont prévus dans le nouveaux système ? Quelle coordination avec les ABH, autres ORMVA, la centrale... ?)
Données agro-climatiques : stations agro-météo compactes automatiques. Dernièrement deux nouvelles stations installées, permettent de mesurer sur place, transmettent l’information à un serveur. En 1996 dans le Tadla ont été mises en œuvre des stations compactes automatiques, qui envoient chaque heure, les données sont stockées dans le serveur avec une application dédiée, avec backups, sauvegardes… Sur une BDD Oracle, l’application génère des rapports en Excel. Une interface spécifique permet de voir les températures max, min, l’EVP calculée, etc. Ces rapports sont générés automatiquement au bout de 24h et sont diffusables.

Trois stations automatiques enregistrent automatiquement la qualité et la piézométrie de la nappe (sur une zone pilote). Les nouveaux équipements sont acquis dans le cadre de la reconversion : GPRS/SIM, GSM. Avant, les données météo étaient transmises par radio. La transmission de fait chaque 12h.

Échanges de données

Avec les ABH, il y a quand même des synergies : contrats de nappes, recharge artificielle, occupation du sol…

Le réseau de l’ABH est épars largement. Ici le maillage est optimisé pour les périmètres irrigués, le réseau est calé très précisément. Ainsi les interpolations sont valables. Il y a une « parfaite coordination » avec l’ABH, mais les systèmes de transmission font défaut. Ex : ici on suit les barrages de façon journalière. Chaque matinée, les données barrage sont collectées par voie téléphonique. En général la communication avec les ABH est manuelle, téléphonique. (Nous suggérons que les ABH ont une appli barrages : demander aux nouvelles spécifications d’inclure l’import du fichier Excel barrages de l’ABH ?)


Parmi les Shapefiles il y a le parcellaire, tous les plans cadastraux numérisés. La zone de reconversion a été mise à jour. Pas d’historique de l’utilisation des parcelles.

Le service informatique a mis à disposition du département de gestion un progiciel de gestion des recettes (financières de l’eau), fait maison par le service. Le progiciel traite les informations de l’amont à l’aval. La BDD permet l’identification des agriculteurs, des parcelles, des recouvrements. Elle est construite sur SqlServer, avec une interface VB6. Distribué sur des sites déportés (26 régies) et exploité par des régisseurs (qui font le recouvrement). Il y a 26 centres de développement agricole dans l’office régional, chaque centre a son siège et son régisseur. L’information est traitée localement avant d’être centralisée, chaque semaine, par fichier Excel sur par exemple USB pour consolider vers la base centrale.

Un arrêté définit la dotation en eau, les cultures sont déclarées par les agriculteurs, puis un plan prévisionnel d’irrigation est établi par l’office en concertation.

Il y a eu des stations de télémesure débits sur les points névralgiques du réseau de distribution, avec un système radio pour transmettre vers le siège toutes les 15 minutes, depuis 1996/1997. Avec le temps, il y a eu des problèmes de maintenance : l’équipement est en cours de renouvellement.

Les règles d’attribution définissent des débits par heure. Ex : betterave : 30 l/s sur 8h, etc.

Le développement du logiciel a nécessité 2 ans de travail pour deux personnes, depuis 6 ans. Les autres services info sont venus voir mais pas n’ont pas installé le progiciel. Chaque ORMVA a ses spécificités donc le progiciel ne peut être copié-collé tel quel mais il peut être paramétré. Ce logiciel ne contient pas de SIG.

L’ORMVA a aussi une application développée en interne.

La direction de l’irrigation coiffe tous les périmètres irrigués.

On a vaguement entendu parler du SNI mais rien d’institutionnel.

Il y a 3 ans, un projet OCP (office chérifien du sol) « fertimaroc » a été mené. Y compris avec l’INRA. Des cartes ont été établies. Spatial Analyst utilisé. Surfer est disponible mais pas encore utilisé (une formation a été faite), pour les bilans hydriques.

Pour l’instant il n’y a pas de commission d’homogénéisation pour un langage commun.
À l’ONEDD l’information n’est pas produite mais consommée. Plusieurs programmes ont été initiés, dont un SNI Environnement national, mais qui n’ont pas encore abouti. On rencontre des contraintes financières, BE, administratives,… Il y a 12 régions nationales. Il y a 10 SI régionaux fonctionnels selon l’ancien découpage régional et 6 en cours de développement.


La collecte se fait par comité d’échanges et de production de l’environnement dans chaque région. Certaines régions sont plus dynamiques que d’autres. Chaque région a un comité de travail, un PF. L’info arrive du PF, le PF est responsable de l’indicateur pour savoir s’il est redéfini ou supprimé. L’échelon national sera mis en œuvre après le régional. Le SNI Environnement sera lancé en 2017 avec des TdR pour tout agréger.

Chaque observatoire régional est libre de sa conception. Pour l’instant il y a 3 types de SI avec 3 types de conception, issus de 3 appels d’offres successifs. Il y a eu des réunions avec la GIZ pour la qualification et la conception d’un SI pilote d’agrégation.


Flux de données : il y aura une intégration automatique, chaque partenaire ira saisir son information dans la BDD. Auparavant il y avait des doubles saisies.

Les BDD sont SqlServer ou MySql, avec un client léger pour la saisie.

A part ces BDD faites en 2011 il y a eu le premier rapport sur les indicateurs.

Il y a en plus des BDD issues d’études qui capitalisent des indicateurs. Les études sont téléchargeables sur le site. Un rapport « Évaluation intégrée de l’environnement » est produit chaque 2 ans.

Les qualifications des premiers développements ont remonté beaucoup d’erreurs.

Il y a un problème d’interopérabilité entre chaque système. L’intérieur a été sollicité pour le découpage administratif (fichiers Excel), les découpages des BV, la température,… Seules les données officielles sont entrées dans les SI régionaux. Il y a des données officieuses mais elles ne sont pas intégrées.

Les STEPs : le suivi des rejets est géré au ministère dans un autre service. Le suivi consiste en l’autosurveillance, le suivi financier… Pour la qualité il y a l’ONEE, les ABH, le ministère. Ici on ne suit que les STEPs qui relèvent du ministère.

Flux d’échanges : L’ONEDD envoie vers les ABH et les ABH envoient des informations d’ensemble, officielles, sous Excel, qui sont re-saisies manuellement (pour l’instant) dans les systèmes. Il n’y a pas de travail d’interopérabilité avec les ABH. Pour le pilote, il y aura des fiches bien précises (canvas).


Il y a un réseau de partenaires de directions régionales (tourisme, eau et forêt, intérieur,… ) au niveau des régions.

Ce sont les partenaires qui fournissent les indicateurs directement. Certains sont spécialisés et d’autres non, ils portent sur différentes échelles. Le partenaire peut directement fournir un Shapefile.

Certains observatoires ont des SIG élaborés à l’échelle de leur région : exemple Marrakech. « S.I.R.E »
Au ministère de l’environnement il y a des BDD thématiques. Ex: atteintes à l’environnement, polluants organiques persistants (campagnes spécifiques), PCD, produits chimiques dangereux, SIG désertification... Les résultats sont transmis à l’observatoire. Ce sont des bases ponctuelles. Il y a aussi une étude sur le cadastre.

Fréquence de MAJ : annuelle.

Le SNI : l’ONEDD était membre mission 1 (diagnostic, état des lieux), et de la mission 2 (TdR des spécifications) ; pas de retour depuis 2 ans.
Il y a eu une visite il y a 2 ans à Poitiers sur le système CARMEN.
Une loi sur l’accès à l’information a été votée mais peut-être que le décret n’est pas encore sorti.

<table>
<thead>
<tr>
<th>Vendredi 29 Juillet 2016 (Matin)</th>
<th>Ministère de l’intérieur : Direction Générale des Collectivités Locales/DEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIFASSE Khadija Cadre (SI et Archivage)</td>
<td>CHEMAOU Rhizlane Chef de service</td>
</tr>
<tr>
<td>AREJDAL Chef de service</td>
<td>ELMISFAHI Bouchra Cadre</td>
</tr>
</tbody>
</table>

**Principale mission** : accompagnement des communes pour l’assainissement via un appui technique et financier. La distribution de l’eau potable et assainissement est de la responsabilité des communes en termes réglementaires.

Les communes gèrent directement ou transfèrent à l’ONEE ou à des régies autonomes.

Au ministère :
- Direction eau et assainissement : uniquement les communes qui gèrent elle-même.
- Direction des régies et services concédés : accompagne les régies autonomes, suit les délégataires privés...

La DEA suit la mise en œuvre des projets : étude, suivi des travaux, gestion. Il y a des bases de données, mais pas de SI. En 2015 l’enjeu SI est identifié au niveau de la direction. La réflexion est en cours. A la direction de l’assainissement, il y a une BDD sur tous les projets accompagnés par la direction de l’assainissement. En termes de suivi c’est du reporting à travers les rapports fournis par les communes. Toute l’information est synthétisée dans une BDD pour dresser un bilan annuel : secteurs ayant fait l’objet d’investissements, taux de raccordement, de branchement. Ces indicateurs sont construits sur les communes qui gèrent directement mais aussi les régies et délégataires.


Pour les indicateurs, c’est à partir des données brutes fournies par chaque opérateur (conso eau potable, etc.), actualisé une fois par an. Ça peut être des fichiers Excel ou des rapports manuels qui doivent être saisis. Ici on réfléchit à un SI spécifique pour l’eau potable, l’assainissement, les déchets en concertation avec tous les partenaires (Ministère de l’environnement notamment).

Concernant le SNI Eau, la DEA était impliquée dans la mission 1, il y a deux ans, pas de retours depuis.
Le SNIE a songé à faire un cadre contractuel et Consulte sur le projet de convention.
Il y a une étude sur les STEP dont l’un des livrables est un SI permettant de tirer des indicateurs. Cette étude implique tous les partenaires. Il n’y a pas d’information sur la fréquence de mise à jour.
Avec la BM il y a eu une étude de conception pour un système d’information, sans suite.
Dans le cadre du PNA, une BDD est établie sur les projets. L’étude lancée cette année par le ministère. Il n’y a pas de SIG à la DEA.
Annexes D
Slide de présentation auprès des organismes rencontrés durant nos visites dans les 3 pays
Etat des lieux des systèmes d’information dans le secteur de l’eau au Maghreb

Tunisie – Maroc - Algérie

Axel AUROUET, Victor ESSAYAN

Pôle Scientifique et Technique d’Antea group
CONCEPT – TUNISIE
AFRICAN GEOSYSTEM COMPANY – ALGERIE
RESING – MAROC

SI & GIRE - Espace, temps, enjeux

Nécessité d’un « Système d’information » pour aider à la décision et répondre à chaque niveau d’enjeu
Un Système d’information sur l’eau

Approche conceptuelle

Un système d’information est un ensemble de moyens matériels et humains pour collecter, produire, stocker, évaluer et partager l’information.

Pyramide des systèmes d’information

- Executive Information System (EIS)
- Decision Support System (DSS)
- Management Information System (MIS)
- Transaction Processing System (TPS)

Déclinaison dans le cadre d’un système d’information sur l’eau

- Indicateurs de performance et de gouvernance
- Modélisation et planification
- Indicateurs techniques
- Acquisition et traitement de la donnée

Système d’information des connaissances

Système d’information

Données multi-sources, multi-acteurs, multi-formats et enjeux pluriels

Organiser / structurer la donnée pour la rendre référentielle
Organiser l’échange et l’interopérabilité
Transformer la donnée en information puis en connaissance
Orienter et faciliter la décision
Partager la donnée, l’information et la connaissance

Données et Bases de données

- Analyser les processus d’acquisition
- Professionnaliser les systèmes de centralisation de données
- Analyser les processus de contrôle de la donnée
- Produire de la donnée référentielle pour faciliter l’interopérabilité

Informations

- Plan de gestion
- Indicateur de gestion des ressources
- Indicateurs de performances
- Modélisation de ressources en eau
- Modélisation de la balance eau-demande

Connaissances

- Quelle est l’état réel des ressources en eau et des usages
- Informations scientifiques et techniques sur la ressource en eau
- Production de valeur guide
- Procédure de contrôle de la donnée et des bases de données

Communication et partage

- Analyser le partage d’information pour l’ensemble des acteurs de l’eau
- Fluidifier les échanges
- Impliquer les acteurs en dehors de la sphère eau
- Communiquer et partager auprès des professionnels et de la société civile
La donnée, un enjeu majeur dans la GIRE

Analyse de vie d’une donnée et enjeux d’un SiEau

Certification classique d’activité de mesure ou de laboratoire (procédures / certifications)

« Certification » d’un Si de l’eau dans le stockage, le contrôle et l’interopérabilité des données

Langage commun et référentiel partagé

L’exemple du SANDRE – Référentiel géographique & référentiel des concepts
Langage commun et référentiel partagé

L'exemple du SANDRE – Référentiel géographique & référentiel des concepts

Les enjeux majeurs de notre projet

Nous nous intéressons moins à la données qu'à la manière dont celle-ci est produite, bancarisée, structurée, administrée et diffusée

4 tâches majeures à l'échelle des 3 pays du Maghreb

Tâche 1 – Recensement des systèmes

Tâche 2 – Les circuits de l'information

Tâche 3 – les flux d'information entrants & sortants

Tâche 4 – matrice SWOT de Synthèse global

Pour 2 objectifs principaux

• Étudier la possibilité d'émergence de Systèmes Nationaux d'information sur l'eau

• Étudier les possibilités de partage des bonnes pratiques sur la matière et à l'échelle du Maghreb
Merci de votre attention